Semin Thromb Hemost
DOI: 10.1055/a-2601-9364
Review Article

Rethinking Platelet and Plasma Transfusion Strategies for Neonates: Evidence, Guidelines, and Unanswered Questions

1   Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
,
Eleni A. Gounari
1   Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
,
2   Neonatal Intensive Care Unit, “Agios Panteleimon” General Hospital of Nikea, Piraeus, Greece
,
3   Laboratory of Hematology and Blood Bank Unit, “Attiko” Hospital, School of Medicine, National and Kapodistrian University of Athens, Greece
,
Daniele Piovani
4   Department of Biomedical Sciences, Humanitas University, Milan, Italy
5   IRCCS Humanitas Research Hospital, Milan, Italy
,
4   Department of Biomedical Sciences, Humanitas University, Milan, Italy
5   IRCCS Humanitas Research Hospital, Milan, Italy
,
Nicoletta Iacovidou
1   Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
,
Argirios E. Tsantes
3   Laboratory of Hematology and Blood Bank Unit, “Attiko” Hospital, School of Medicine, National and Kapodistrian University of Athens, Greece
› Author Affiliations

Abstract

The transfusion of platelets and fresh frozen plasma (FFP) to critically ill neonates in neonatal intensive care units (NICUs) is a common intervention, yet it is still widely performed without adhering to international guidelines. The guidance itself on the therapeutic management of neonatal coagulation disorders is generally limited due to the absence of strong indications for treatment and is mainly aimed at the prevention of major hemorrhagic events such as intraventricular hemorrhage (IVH) in premature neonates. Historically, the underrepresentation of neonates in clinical studies related to transfusion medicine had led to significant gaps in our knowledge regarding the best transfusion practices in this vulnerable group and to a wide variability in policies among different neonatal units, often based on local experience or guidance designed for older children or adults, and possibly increasing the risk of inappropriate or ineffective interventions. Platelet transfusion and, particularly, FFP administration have been linked to potentially fatal complications in neonates and thus any decision needs to be carefully balanced and requires a thorough consideration of multiple factors in the neonatal population. Despite recent advances toward more restrictive practices, platelet and FFP transfusions are still subject to wide variability in practices.

This review examines the existing literature on platelet and FFP transfusions and on the management of massive hemorrhage in neonates, provides a summary of evidence-based guidelines on these topics, and highlights current developments and areas for ongoing and future research with the aim of improving clinical practices.



Publication History

Received: 22 March 2025

Accepted: 06 May 2025

Accepted Manuscript online:
07 May 2025

Article published online:
23 May 2025

© 2025. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Davenport P, Sola-Visner M. Hemostatic challenges in neonates. Front Pediatr 2021; 9 (55) 627715
  • 2 Sokou R, Piovani D, Konstantinidi A. et al. Prospective temporal validation of the Neonatal Bleeding Risk (NeoBRis) index. Thromb Haemost 2021; 121 (09) 1263-1266
  • 3 Venkatesh V, Curley A, Khan R. et al. A novel approach to standardised recording of bleeding in a high risk neonatal population. Arch Dis Child Fetal Neonatal Ed 2013; 98 (03) F260-F263
  • 4 Fustolo-Gunnink SF, Huisman EJ, van der Bom JG. et al. Are thrombocytopenia and platelet transfusions associated with major bleeding in preterm neonates? A systematic review. Blood Rev 2019; 36: 1-9
  • 5 Sokou R, Parastatidou S, Konstantinidi A. et al. Fresh frozen plasma transfusion in the neonatal population: a systematic review. Blood Rev 2022; 55: 100951
  • 6 Houben NAM, Fustolo-Gunnink S, Fijnvandraat K. et al; INSPIRE Study Group. Plasma transfusions in neonatal intensive care units: a prospective observational study. Arch Dis Child Fetal Neonatal Ed 2025;fetalneonatal-2024-327926
  • 7 Houben NAM, Lopriore E, Fijnvandraat K. et al; INSPIRE Study Group. Platelet transfusion in neonatal intensive care units of 22 European countries: a prospective observational study. Lancet Reg Health Eur 2024; 47: 101086
  • 8 Billion E, Ghattas S, Jarreau PH. et al. Lowering platelet-count threshold for transfusion in preterm neonates decreases the number of transfusions without increasing severe hemorrhage events. Eur J Pediatr 2024; 183 (10) 4417-4424
  • 9 Graham R, Mancher M, Wolman DM, Greenfield S, Steinberg E. eds. Institute of Medicine (US) Committee on Standards for Developing Trustworthy Clinical Practice Guidelines. Clinical Practice Guidelines We Can Trust. Washington (DC): National Academies Press (US); 2011 . Accessed at: https://www.ncbi.nlm.nih.gov/sites/books/NBK209539/
  • 10 Cohn CS, Delaney M, Johnson ST, Katz LM. Technical Manual, 20th ed. AABB; 2020. . Accessed at: https://ebooks.aabb.org/product/technical-manual-20th-edition50155278
  • 11 American Red Cross. A Compendium of Transfusion Practice Guidelines. Edition 4.0. 2021 . Accessed May 12, 2024 at: https://www.redcross.org/content/dam/redcrossblood/hospital-page-documents/334401_compendium_v04jan2021_bookmarkedworking_rwv01.pdf
  • 12 Guidelines International Network. 2024 . Accessed May 12, 2024 at: https://g-i-n.net/
  • 13 National Institute for Health for Health and Care Excellence (NICE). 2024 . Accessed at: https://www.nice.org.uk/
  • 14 National Health Service (NHS) Evidence. 2024 . Accessed at: https://www.evidence.nhs.uk/
  • 15 Canadian Medical Association Infobase. 2024 . Accessed at: https://joulecma.ca/cpg/homepage
  • 16 New Zealand Guidelines Group. 2024 . Accessed at: https://www.nzgp-webdirectory.co.nz/WEB+DIRECTORY/CLINICAL+INFORMATION/GUIDELINES+NEW+ZEALAND.html
  • 17 World Health Organization. 2024 . Accessed at: https://www.who.int/publications/guidelines/en/
  • 18 Scottish Intercollegiate Guidelines Network (SIGN). 2024 . Accessed at: https://www.sign.ac.uk/
  • 19 NBA. Patient Blood Management Guidelines: Module 6–Neonatal and Paediatrics. Updated-May 2020. Accessed April 27, 2024 at: https://www.blood.gov.au/module-6-neonatal-and-paediatrics-patient-blood-management-guidelines
  • 20 Australian Red Cross Lifeblood. Component compatibility. 2021–2025. Accessed April 12, 2025 at: https://www.lifeblood.com.au/health-professionals/products/component-compatibility
  • 21 Heal JM, Blumberg N. Optimizing platelet transfusion therapy. Blood Rev 2004; 18 (03) 149-165
  • 22 Tynngård N. Preparation, storage and quality control of platelet concentrates. Transfus Apher Sci 2009; 41 (02) 97-104
  • 23 Tsalas S, Petrou E, Tsantes AG. et al. Pathogen reduction technologies and their impact on metabolic and functional properties of treated platelet concentrates: a systematic review. Semin Thromb Hemost 2023; 49 (05) 523-541
  • 24 Campbell RA, Franks Z, Bhatnagar A. et al. Granzyme A in human platelets regulates the synthesis of proinflammatory cytokines by monocytes in aging. J Immunol 2018; 200 (01) 295-304
  • 25 Lozano M, Heddle N, Williamson LM, Wang G, AuBuchon JP, Dumont LJ. Biomedical Excellence for Safer Transfusion Collaborative. Practices associated with ABO-incompatible platelet transfusions: a BEST collaborative international survey. Transfusion 2010; 50 (08) 1743-1748
  • 26 Cardigan R, New HV, Estcourt L. et al. International forum on policies and practice for transfusion of ABO and RhD non-identical platelets: summary. Vox Sang 2022; 117 (01) 136-144
  • 27 Cardillo A, Heal JM, Henrichs K. et al. Reducing the need for HLA-matched platelet transfusion. N Engl J Med 2021; 384 (25) 2451-2452
  • 28 Carr R, Hutton JL, Jenkins JA, Lucas GF, Amphlett NW. Transfusion of ABO-mismatched platelets leads to early platelet refractoriness. Br J Haematol 1990; 75 (03) 408-413
  • 29 Heal JM, Masel D, Rowe JM, Blumberg N. Circulating immune complexes involving the ABO system after platelet transfusion. Br J Haematol 1993; 85 (03) 566-572
  • 30 Zaffuto BJ, Conley GW, Connolly GC. et al. ABO-immune complex formation and impact on platelet function, red cell structural integrity and haemostasis: an in vitro model of ABO non-identical transfusion. Vox Sang 2016; 110 (03) 219-226
  • 31 McRae HL, Millar MW, Slavin SA, Blumberg N, Rahman A, Refaai MA. Essential role of Rho-associated kinase in ABO immune complex-mediated endothelial barrier disruption. Biomedicines 2021; 9 (12) 1851
  • 32 Kerkhoffs JL, Eikenboom JC, van de Watering LM, van Wordragen-Vlaswinkel RJ, Wijermans PW, Brand A. The clinical impact of platelet refractoriness: correlation with bleeding and survival. Transfusion 2008; 48 (09) 1959-1965
  • 33 Shanwell A, Andersson TM, Rostgaard K. et al. Post-transfusion mortality among recipients of ABO-compatible but non-identical plasma. Vox Sang 2009; 96 (04) 316-323
  • 34 Inaba K, Branco BC, Rhee P. et al. Impact of ABO-identical vs ABO-compatible nonidentical plasma transfusion in trauma patients. Arch Surg 2010; 145 (09) 899-906
  • 35 Slichter SJ, Kaufman RM, Assmann SF. et al. Dose of prophylactic platelet transfusions and prevention of hemorrhage. N Engl J Med 2010; 362 (07) 600-613
  • 36 Blumberg N, Heal JM, Rowe JM. A randomized trial of washed red blood cell and platelet transfusions in adult acute leukemia [ISRCTN76536440]. BMC Blood Disord 2004; 4 (01) 6
  • 37 Magid-Bernstein J, Beaman CB, Carvalho-Poyraz F. et al. Impacts of ABO-incompatible platelet transfusions on platelet recovery and outcomes after intracerebral hemorrhage. Blood 2021; 137 (19) 2699-2703
  • 38 Bougie DW, Reese SE, Birch RJ. et al; NHLBI Recipient Epidemiology and Donor Evaluation Study-IV-Pediatric (REDS-IV-P). Associations between ABO non-identical platelet transfusions and patient outcomes—a multicenter retrospective analysis. Transfusion 2023; 63 (05) 960-972
  • 39 Cid J, Yazer MH, Lozano M. Platelet transfusion and respecting patient D type. Curr Opin Hematol 2015; 22 (06) 540-546
  • 40 Blanchette VS, Kühne T, Hume H, Hellmann J. Platelet transfusion therapy in newborn infants. Transfus Med Rev 1995; 9 (03) 215-230
  • 41 Moncharmont P, Barday G, Meyer F. Red blood cell alloimmunisation after platelet transfusion: a 5-year study. Blood Transfus 2014; 12 Suppl 1 (Suppl. 01) s147-s148
  • 42 Zeiler T, Wittmann G, Zingsem J, Weisbach V, Zimmermann R, Eckstein R. A dose of 100 IU intravenous anti-D gammaglobulin is effective for the prevention of RhD immunisation after RhD-incompatible single donor platelet transfusion. Vox Sang 1994; 66 (03) 243
  • 43 Canadian Blood Services. Neonatal and pediatric transfusion. 2024 . Accessed April 27, 2024 at: https://professionaleducation.blood.ca/en/transfusion/clinical-guide/neonatal-and-pediatric-transfusion#18
  • 44 New HV, Berryman J, Bolton-Maggs PHB. et al; British Committee for Standards in Haematology. Guidelines on transfusion for fetuses, neonates and older children. Br J Haematol 2016; 175 (05) 784-828
  • 45 Moore CM, Lorusso A, Morgan L. et al. Safety and feasibility of platelet transfusion through long catheters in the neonatal intensive care unit: an in vitro study. Arch Dis Child Fetal Neonatal Ed 2023; 109 (01) 70-73
  • 46 Holme PA, Orvim U, Hamers MJ. et al. Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis. Arterioscler Thromb Vasc Biol 1997; 17 (04) 646-653
  • 47 Rubenstein DA, Yin W. Platelet-activation mechanisms and vascular remodeling. Compr Physiol 2018; 8 (03) 1117-1156
  • 48 Sokou R, Piovani D, Konstantinidi A. et al. A risk score for predicting the incidence of hemorrhage in critically ill neonates: development and validation study. Thromb Haemost 2021; 121 (02) 131-139
  • 49 Villamor-Martinez E, Fumagalli M, Alomar YI. et al. Cerebellar hemorrhage in preterm infants: a meta-analysis on risk factors and neurodevelopmental outcome. Front Physiol 2019; 10: 800
  • 50 von Lindern JS, van den Bruele T, Lopriore E, Walther FJ. Thrombocytopenia in neonates and the risk of intraventricular hemorrhage: a retrospective cohort study. BMC Pediatr 2011; 11: 16
  • 51 Garvey AA, Walsh BH, Inder TE. Pathogenesis and prevention of intraventricular hemorrhage. Semin Perinatol 2022; 46 (05) 151592
  • 52 Levene MI, de Vries L. Extension of neonatal intraventricular haemorrhage. Arch Dis Child 1984; 59 (07) 631-636
  • 53 Sokou R, Parastatidou S, Konstantinidi A. et al. Neonatal hematological parameters: the translational aspect of developmental hematopoiesis. Ann Hematol 2023; 102 (04) 707-714
  • 54 Weinstein RM, Parkinson C, Everett AD, Graham EM, Vaidya D, Northington FJ. A predictive clinical model for moderate to severe intraventricular hemorrhage in very low birth weight infants. J Perinatol 2022; 42 (10) 1374-1379
  • 55 Stanworth SJ, Clarke P, Watts T. et al; Platelets and Neonatal Transfusion Study Group. Prospective, observational study of outcomes in neonates with severe thrombocytopenia. Pediatrics 2009; 124 (05) e826-e834
  • 56 Muthukumar P, Venkatesh V, Curley A. et al; Platelets Neonatal Transfusion Study Group. Severe thrombocytopenia and patterns of bleeding in neonates: results from a prospective observational study and implications for use of platelet transfusions. Transfus Med 2012; 22 (05) 338-343
  • 57 Grevsen AK, Hviid CVB, Hansen AK, Hvas AM. The role of platelets in premature neonates with intraventricular hemorrhage: a systematic review and meta-analysis. Semin Thromb Hemost 2020; 46 (03) 366-378
  • 58 Andrew M, Castle V, Saigal S, Carter C, Kelton JG. Clinical impact of neonatal thrombocytopenia. J Pediatr 1987; 110 (03) 457-464
  • 59 von Lindern JS, Hulzebos CV, Bos AF, Brand A, Walther FJ, Lopriore E. Thrombocytopaenia and intraventricular haemorrhage in very premature infants: a tale of two cities. Arch Dis Child Fetal Neonatal Ed 2012; 97 (05) F348-F352
  • 60 Rastogi S, Olmez I, Bhutada A, Rastogi D. Drop in platelet counts in extremely preterm neonates and its association with clinical outcomes. J Pediatr Hematol Oncol 2011; 33 (08) 580-584
  • 61 Ribeiro HS, Assunção A, Vieira RJ, Soares P, Guimarães H, Flor-de-Lima F. Platelet transfusions in preterm infants: current concepts and controversies—a systematic review and meta-analysis. Eur J Pediatr 2023; 182 (08) 3433-3443
  • 62 Andrew M, Vegh P, Caco C. et al. A randomized, controlled trial of platelet transfusions in thrombocytopenic premature infants. J Pediatr 1993; 123 (02) 285-291
  • 63 Kumar J, Dutta S, Sundaram V, Saini SS, Sharma RR, Varma N. Platelet transfusion for PDA closure in preterm infants: a randomized controlled trial. Pediatrics 2019; 143 (05) e20182565
  • 64 Curley A, Stanworth SJ, Willoughby K. et al; PlaNeT2 MATISSE Collaborators. Randomized trial of platelet-transfusion thresholds in neonates. N Engl J Med 2019; 380 (03) 242-251
  • 65 Hasan R, Saifee NH. Benefits of lower neonatal platelet transfusion thresholds. Transfusion 2021; 61 (06) 1672-1675
  • 66 Fustolo-Gunnink SF, Fijnvandraat K, van Klaveren D. et al; PlaNeT2 and MATISSE collaborators. Preterm neonates benefit from low prophylactic platelet transfusion threshold despite varying risk of bleeding or death. Blood 2019; 134 (26) 2354-2360
  • 67 Moore CM, D'Amore A, Fustolo-Gunnink S. et al; PlaNeT2 MATISSE. Two-year outcomes following a randomised platelet transfusion trial in preterm infants. Arch Dis Child Fetal Neonatal Ed 2023; 108 (05) 452-457
  • 68 Davenport PE, Wood TR, Heagerty PJ, Sola-Visner MC, Juul SE, Patel RM. Platelet transfusion and death or neurodevelopmental impairment in children born extremely preterm. JAMA Netw Open 2024; 7 (01) e2352394-e2352394
  • 69 Hacein-Bey-Abina S, Estienne M, Bessoles S. et al. Erythropoietin is a major regulator of thrombopoiesis in thrombopoietin-dependent and -independent contexts. Exp Hematol 2020; 88: 15-27
  • 70 Ferrer-Marín F, Sola-Visner M. Neonatal platelet physiology and implications for transfusion. Platelets 2022; 33 (01) 14-22
  • 71 Moore CM, Curley A. Platelet transfusion thresholds in neonatal medicine. Early Hum Dev 2019; 138: 104845
  • 72 Ballabh P. Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr Res 2010; 67 (01) 1-8
  • 73 Dannaway DC, Noori S. A randomized trial of platelet transfusions over 30 vs 120 minutes: is there an effect on post-transfusion platelet counts?. J Perinatol 2013; 33 (09) 703-706
  • 74 Blumberg N, Asante AA, Nguyen PT, Heal JM. Platelet transfusions: the good, the bad, and the ugly. Anesth Analg 2024; 138 (05) 921-924
  • 75 Davenport P, Sola-Visner M. Immunologic effects of red blood cell and platelet transfusions in neonates. Curr Opin Hematol 2022; 29 (06) 297-305
  • 76 Sitaru AG, Holzhauer S, Speer CP. et al. Neonatal platelets from cord blood and peripheral blood. Platelets 2005; 16 (3-4): 203-210
  • 77 Stolla MC, Catherman SC, Kingsley PD. et al. Lin28b regulates age-dependent differences in murine platelet function. Blood Adv 2019; 3 (01) 72-82
  • 78 Hardy AT, Palma-Barqueros V, Watson SK. et al. Significant hypo-responsiveness to GPVI and CLEC-2 agonists in pre-term and full-term neonatal platelets and following immune thrombocytopenia. Thromb Haemost 2018; 118 (06) 1009-1020
  • 79 Fowlie PW, Davis PG, McGuire W. Prophylactic intravenous indomethacin for preventing mortality and morbidity in preterm infants. Cochrane Database Syst Rev 2010; 2010 (07) CD000174
  • 80 Ferrer-Marin F, Chavda C, Lampa M, Michelson AD, Frelinger III AL, Sola-Visner M. Effects of in vitro adult platelet transfusions on neonatal hemostasis. J Thromb Haemost 2011; 9 (05) 1020-1028
  • 81 Margraf A, Nussbaum C, Sperandio M. Ontogeny of platelet function. Blood Adv 2019; 3 (04) 692-703
  • 82 Margraf A, Nussbaum C, Rohwedder I. et al. Maturation of platelet function during murine fetal development in vivo. Arterioscler Thromb Vasc Biol 2017; 37 (06) 1076-1086
  • 83 Hengartner T, Adams M, Pfister RE. et al; Swiss Neonatal Network. Associations between red blood cell and platelet transfusions and retinopathy of prematurity. Neonatology 2020; 117 (05) 1-7
  • 84 Moore CM, Curley AE. Neonatal platelet transfusions: starting again. Transfus Med Rev 2021; 35 (03) 29-35
  • 85 Sola-Visner M, Leeman KT, Stanworth SJ. Neonatal platelet transfusions: new evidence and the challenges of translating evidence-based recommendations into clinical practice. J Thromb Haemost 2022; 20 (03) 556-564
  • 86 Gilmore LE, Chou ST, Ghavam S, Thom CS. Consensus transfusion guidelines for a large neonatal intensive care network. Transfusion 2024; 64 (08) 1562-1569
  • 87 Deschmann E, Saxonhouse MA, Feldman HA, Norman M, Barbian M, Sola-Visner M. Association of bleeding scores and platelet transfusions with platelet counts and closure times in response to adenosine diphosphate (CT-ADPs) among preterm neonates with thrombocytopenia. JAMA Netw Open 2020; 3 (04) e203394
  • 88 Sokou R, Parastatidou S, Konstantinidi A. et al. Contemporary tools for evaluation of hemostasis in neonates. Where are we and where are we headed?. Blood Rev 2024; 64: 101157
  • 89 Samarkanova D, Rodríguez L, Vives J. et al. Cord blood-derived platelet concentrates as starting material for new therapeutic blood components prepared in a public cord blood bank: from product development to clinical application. Blood Transfus 2020; 18 (03) 208-216
  • 90 Querol S, Samarkanova D. Rapid review: next generation of cord blood banks; transplantation and beyond. Transfusion 2019; 59 (10) 3048-3050
  • 91 Mussano F, Genova T, Munaron L, Petrillo S, Erovigni F, Carossa S. Cytokine, chemokine, and growth factor profile of platelet-rich plasma. Platelets 2016; 27 (05) 467-471
  • 92 Valentini CG, Nuzzolo ER, Bianchi M. et al. Cord blood platelet lysate: in vitro evaluation to support the use in regenerative medicine. Mediterr J Hematol Infect Dis 2019; 11 (01) e2019021
  • 93 Six KR, Sicot G, Devloo R, Feys HB, Baruch D, Compernolle V. A comparison of haematopoietic stem cells from umbilical cord blood and peripheral blood for platelet production in a microfluidic device. Vox Sang 2019; 114 (04) 330-339
  • 94 van den Oudenrijn S, von dem Borne AE, de Haas M. Differences in megakaryocyte expansion potential between CD34(+) stem cells derived from cord blood, peripheral blood, and bone marrow from adults and children. Exp Hematol 2000; 28 (09) 1054-1061
  • 95 Xie X, Yao H, Han X, Yue W, Pei X. Therapeutic use of red blood cells and platelets derived from human cord blood stem cells. Stem Cells Transl Med 2021; 10 Suppl 2 (Suppl. 02) S48-S53
  • 96 Sugimoto N, Kanda J, Nakamura S. et al. iPLAT1: the first-in-human clinical trial of iPSC-derived platelets as a phase 1 autologous transfusion study. Blood 2022; 140 (22) 2398-2402
  • 97 Xi J, Zhu H, Liu D. et al. Infusion of megakaryocytic progenitor products generated from cord blood hematopoietic stem/progenitor cells: results of the phase 1 study. PLoS One 2013; 8 (02) e54941
  • 98 Goel R, Josephson CD. Recent advances in transfusions in neonates/infants. F1000 Res 2018;7(609):F1000 Faculty Rev-609
  • 99 Menzies Wojtowicz M, Motum P, Dhir V. Extended life plasma: blood wastage and opportunities. Transfus Med 2020; 30 (02) 161-163
  • 100 Australian & New Zealand Society of Blood Transfusion Ltd. Extended Life Plasma: A Framework for Preparation, Storage and Use. 2nd ed. Australian & New Zealand Society of Blood Transfusion Ltd.; August 2013 Corrected September 2013
  • 101 Dogra M, Sidhu M, Vasudev R, Dogra A. Comparative analysis of activity of coagulation factors V and VIII and level of fibrinogen in fresh frozen plasma and frozen plasma. Asian J Transfus Sci 2015; 9 (01) 6-8
  • 102 Ichikawa J, Iba T, Okazaki R. et al. Hemostatic capability of ultrafiltrated fresh frozen plasma compared to cryoprecipitate. Sci Rep 2023; 13 (01) 21579
  • 103 Nascimento B, Callum J, Rubenfeld G, Neto JB, Lin Y, Rizoli S. Clinical review: Fresh frozen plasma in massive bleedings—more questions than answers. Crit Care 2010; 14 (01) 202
  • 104 Adcock DM, Favaloro EJ, Lippi G. Critical pre-examination variables in the hemostasis laboratory and their quality indicators. Clin Biochem 2016; 49 (18) 1315-1320
  • 105 Liumbruno G, Bennardello F, Lattanzio A, Piccoli P, Rossetti G. Italian Society of Transfusion Medicine and Immunohaematology (SIMTI) Work Group. Recommendations for the transfusion of plasma and platelets. Blood Transfus 2009; 7 (02) 132-150
  • 106 Rock G. A comparison of methods of pathogen inactivation of FFP. Vox Sang 2011; 100 (02) 169-178
  • 107 Mast AE, Stadanlick JE, Lockett JM, Dietzen DJ. Solvent/detergent-treated plasma has decreased antitrypsin activity and absent antiplasmin activity. Blood 1999; 94 (11) 3922-3927
  • 108 Motta M, Del Vecchio A, Chirico G. Fresh frozen plasma administration in the neonatal intensive care unit: evidence-based guidelines. Clin Perinatol 2015; 42 (03) 639-650
  • 109 Catford K, Muthukumar P, Reddy C. et al. Routine neonatal coagulation testing increases use of fresh-frozen plasma. Transfusion 2014; 54 (05) 1444-1445
  • 110 Beverley DW, Pitts-Tucker TJ, Congdon PJ, Arthur RJ, Tate G. Prevention of intraventricular haemorrhage by fresh frozen plasma. Arch Dis Child 1985; 60 (08) 710-713
  • 111 Hambleton G, Appleyard WJ. Controlled trial of fresh frozen plasma in asphyxiated low birthweight infants. Arch Dis Child 1973; 48 (01) 31-35
  • 112 Mendicini M, Scalamandrè A, Savignoni PG, Picece-Bucci S, Esuperanzi R, Bucci G. A controlled trial on therapy for newborns weighing 750-1 250 g. I. Clinical findings and mortality in the newborn period. Acta Paediatr Scand 1971; 60 (04) 407-416
  • 113 A randomized trial comparing the effect of prophylactic intravenous fresh frozen plasma, gelatin or glucose on early mortality and morbidity in preterm babies. The Northern Neonatal Nursing Initiative [NNNI] Trial Group. Eur J Pediatr 1996; 155 (07) 580-588
  • 114 Tran TT, Veldman A, Malhotra A. Does risk-based coagulation screening predict intraventricular haemorrhage in extreme premature infants?. Blood Coagul Fibrinolysis 2012; 23 (06) 532-536
  • 115 Northern Neonatal Nursing Initiative Trial Group. Randomised trial of prophylactic early fresh-frozen plasma or gelatin or glucose in preterm babies: outcome at 2 years. Lancet 1996; 348 (9022) 229-232
  • 116 Acunas BA, Peakman M, Liossis G. et al. Effect of fresh frozen plasma and gammaglobulin on humoral immunity in neonatal sepsis. Arch Dis Child Fetal Neonatal Ed 1994; 70 (03) F182-F187
  • 117 Gross SJ, Filston HC, Anderson JC. Controlled study of treatment for disseminated intravascular coagulation in the neonate. J Pediatr 1982; 100 (03) 445-448
  • 118 Chekrizova V, Murphy WG. Solvent-detergent plasma: use in neonatal patients, in adult and paediatric patients with liver disease and in obstetric and gynaecological emergencies. Transfus Med 2006; 16 (02) 85-91
  • 119 Dogra K, Kaur G, Basu S, Chawla D. Fresh frozen plasma and platelet transfusion practices in neonatal intensive care unit of a tertiary care hospital. Indian J Hematol Blood Transfus 2020; 36 (01) 141-148
  • 120 Goel R, Josephson CD, Patel EU. et al. Individual- and hospital-level correlates of red blood cell, platelet, and plasma transfusions among hospitalized children and neonates: a nationally representative study in the United States. Transfusion 2020; 60 (08) 1700-1712
  • 121 Raban MS, Harrison MC. Fresh frozen plasma use in a neonatal unit in South Africa. J Trop Pediatr 2015; 61 (04) 266-271
  • 122 Shabanian R, Dehestani A, Dadkhah M. et al. Fresh frozen plasma prime and the level of gammaglobulin after pediatric cardiopulmonary bypass. Am J Clin Exp Immunol 2020; 9 (05) 91-100
  • 123 Mumford AD, Ackroyd S, Alikhan R. et al; BCSH Committee. Guideline for the diagnosis and management of the rare coagulation disorders: a United Kingdom Haemophilia Centre Doctors' Organization guideline on behalf of the British Committee for Standards in Haematology. Br J Haematol 2014; 167 (03) 304-326
  • 124 Castaman G, Linari S. Diagnosis and treatment of von Willebrand disease and rare bleeding disorders. J Clin Med 2017; 6 (04) 45
  • 125 Peyvandi F, Menegatti M. Treatment of rare factor deficiencies in 2016. Hematology (Am Soc Hematol Educ Program) 2016; 2016 (01) 663-669
  • 126 Jain S, Acharya SS. Management of rare coagulation disorders in 2018. Transfus Apher Sci 2018; 57 (06) 705-712
  • 127 Andrew M, Paes B, Milner R. et al. Development of the human coagulation system in the full-term infant. Blood 1987; 70 (01) 165-172
  • 128 Konstantinidi A, Sokou R, Parastatidou S. et al. Clinical application of thromboelastography/thromboelastometry (TEG/TEM) in the neonatal population: a narrative review. Semin Thromb Hemost 2019; 45 (05) 449-457
  • 129 Shenoy A, Louissaint J, Shannon C, Tapper EB, Lok AS. Viscoelastic testing prior to non-surgical procedures reduces blood product use without increasing bleeding risk in cirrhosis. Dig Dis Sci 2022; 67 (11) 5290-5299
  • 130 Tsantes AG, Loukopoulou I, Papadopoulos DV. et al. The hypercoagulable profile of patients with bone tumors: a pilot observational study using rotational thromboelastometry. Cancers (Basel) 2022; 14 (16) 3930
  • 131 Sokou R, Tritzali M, Piovani D. et al. Comparative performance of four established neonatal disease scoring systems in predicting in-hospital mortality and the potential role of thromboelastometry. Diagnostics (Basel) 2021; 11 (11) 1955
  • 132 Sokou R, Tsantes AG, Konstantinidi A. et al. Rotational thromboelastometry in neonates admitted to a neonatal intensive care unit: a large cross-sectional study. Semin Thromb Hemost 2021; 47 (07) 875-884
  • 133 Georgiadou P, Sokou R, Tsantes AG. et al. The non-activated thromboelastometry (NATEM) assay's application among adults and neonatal/pediatric population: a systematic review. Diagnostics (Basel) 2022; 12 (03) 658
  • 134 Karapati E, Sokou R, Iliodromiti Z. et al. Assessment of hemostatic profile in neonates with intrauterine growth restriction: a systematic review of literature. Semin Thromb Hemost 2024; 50 (02) 169-181
  • 135 Karapati E, Valsami S, Sokou R. et al. Hemostatic profile of intrauterine growth-restricted neonates: assessment with the use of NATEM assay in cord blood samples. Diagnostics (Basel) 2024; 14 (02) 178
  • 136 Lampridou M, Sokou R, Tsantes AG. et al. ROTEM diagnostic capacity for measuring fibrinolysis in neonatal sepsis. Thromb Res 2020; 192: 103-108
  • 137 Parastatidou S, Sokou R, Tsantes AG. et al. The role of ROTEM variables based on clot elasticity and platelet component in predicting bleeding risk in thrombocytopenic critically ill neonates. Eur J Haematol 2021; 106 (02) 175-183
  • 138 Sokou R, Foudoulaki-Paparizos L, Lytras T. et al. Reference ranges of thromboelastometry in healthy full-term and pre-term neonates. Clin Chem Lab Med 2017; 55 (10) 1592-1597
  • 139 Sokou R, Georgiadou P, Tsantes AG. et al. The utility of NATEM assay in predicting bleeding risk in critically ill neonates. Semin Thromb Hemost 2023; 49 (02) 182-191
  • 140 Sokou R, Giallouros G, Konstantinidi A. et al. Thromboelastometry for diagnosis of neonatal sepsis-associated coagulopathy: an observational study. Eur J Pediatr 2018; 177 (03) 355-362
  • 141 Sokou R, Konstantinidi A, Tsante KA. et al. The impact of maternal smoking during pregnancy on hemostatic profile of neonates using thromboelastometry (ROTEM). A pilot observational study. Placenta 2022; 129: 23-29
  • 142 Sokou R, Palioura AE, Konstantinidi A. et al. The role of rotational thromboelastometry in early detection of the hemostatic derangements in neonates with systemic Candida infection. J Fungi (Basel) 2024; 11 (01) 17
  • 143 Sokou R, Bikouli E-D, Tsantes AG. et al. Hemostatic profile and serum levels of interferon gamma-induced protein 10 (IP-10) in neonates born to mothers with COVID-19 during the peripartum period. Int J Mol Sci 2025; 26 (03) 1201
  • 144 Sokou R, Gounari EA, Tsante KA. et al. Thromboelastometry-based profiling of haemostatic alterations in neonatal sepsis by causative pathogens. Antibiotics (Basel) 2025; 14 (01) 101
  • 145 Wikkelsø A, Wetterslev J, Møller AM, Afshari A. Thromboelastography (TEG) or thromboelastometry (ROTEM) to monitor haemostatic treatment versus usual care in adults or children with bleeding. Cochrane Database Syst Rev 2016; 2016 (08) CD007871
  • 146 Sokou R, Tsantes AG, Lampridou M. et al. Thromboelastometry and prediction of in-hospital mortality in neonates with sepsis. Int J Lab Hematol 2024; 46 (01) 113-119
  • 147 Sulaj A, Tsaousi M, Karapati E. et al. Reference values of thromboelastometry parameters in healthy term neonates using NATEM in cord blood samples. Children (Basel) 2022; 9 (01) 47
  • 148 Theodoraki M, Sokou R, Valsami S. et al. Reference values of thrombolastometry parameters in healthy term neonates. Children (Basel) 2020; 7 (12) 259
  • 149 Tsalas S, Tsantes AG, Petrou E. et al. The effects of pathogen reduction technology on apheresis platelet concentrates stored in PAS. Blood Transfus 2024; 22 (05) 405-414
  • 150 Tsantes AG, Papadopoulos DV, Roustemis AG. et al. Rotational thromboelastometry predicts transfusion requirements in total joint arthroplasties. Semin Thromb Hemost 2023; 49 (02) 134-144
  • 151 Tsaousi M, Iliodromiti Z, Iacovidou N. et al. Hemostasis in neonates with perinatal hypoxia—laboratory approach: a systematic review. Semin Thromb Hemost 2023; 49 (04) 391-401
  • 152 Marques Antunes M, Alves M, Pinto FJ, Agnelli G, Caldeira D. The high-risk bleeding category of different scores in patients with venous thromboembolism: systematic review and meta-analysis. Eur J Intern Med 2021; 94: 45-55
  • 153 Raymer JM, Flynn LM, Martin RF. Massive transfusion of blood in the surgical patient. Surg Clin North Am 2012; 92 (02) 221-234, vii vii.
  • 154 Diab YA, Wong EC, Luban NL. Massive transfusion in children and neonates. Br J Haematol 2013; 161 (01) 15-26
  • 155 Brohi K, Cohen MJ, Ganter MT, Matthay MA, Mackersie RC, Pittet JF. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway?. Ann Surg 2007; 245 (05) 812-818
  • 156 Patregnani JT, Borgman MA, Maegele M, Wade CE, Blackbourne LH, Spinella PC. Coagulopathy and shock on admission is associated with mortality for children with traumatic injuries at combat support hospitals. Pediatr Crit Care Med 2012; 13 (03) 273-277
  • 157 Davenport R, Khan S. Management of major trauma haemorrhage: treatment priorities and controversies. Br J Haematol 2011; 155 (05) 537-548
  • 158 Smith C, Wagner K. Principles of fluid and blood warming in trauma. ITACCS 2008;18
  • 159 Fasano RM, Paual WM, Pisciotto PT. Complications of neonatal transfusion. In: Transfusion Reactions. 4th ed. Bethesda, MD: AABB Press; 2012. Chapter 15
  • 160 Hendrickson JE, Shaz BH, Pereira G. et al. Coagulopathy is prevalent and associated with adverse outcomes in transfused pediatric trauma patients. J Pediatr 2012; 160 (02) 204-209.e3
  • 161 MacLeod JB, Lynn M, McKenney MG, Cohn SM, Murtha M. Early coagulopathy predicts mortality in trauma. J Trauma 2003; 55 (01) 39-44
  • 162 Lustenberger T, Talving P, Kobayashi L. et al. Early coagulopathy after isolated severe traumatic brain injury: relationship with hypoperfusion challenged. J Trauma 2010; 69 (06) 1410-1414
  • 163 Talving P, Lustenberger T, Lam L. et al. Coagulopathy after isolated severe traumatic brain injury in children. J Trauma 2011; 71 (05) 1205-1210
  • 164 Spahn DR, Bouillon B, Cerny V. et al. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care 2013; 17 (02) R76
  • 165 Holcomb JB, Tilley BC, Baraniuk S. et al; PROPPR Study Group. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA 2015; 313 (05) 471-482
  • 166 MoH-IB2020_010 Consent to Medical and Healthcare Treatment Manual. POWH and RHW- CLIN072 Critical Bleeding Protocol (CBP) (Formerly Massive Transfusion Protocol). Australasian Neonatal Medicines Formulary. 2025
  • 167 University Hospitals Sussex NHS Foundation Trust. . Neonatal Major Haemorrhage. Accessed December 10, 2024 at: https://www.bsuh.nhs.uk/tmbu/wp-content/uploads/sites/16/2022/06/Neonatal-major-haemorrhage-final.pdf
  • 168 Shakur H, Roberts I, Bautista R. et al; CRASH-2 trial collaborators. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet 2010; 376 (9734) 23-32
  • 169 The Royal College of Paediatrics and Child Health. Evidence Statement: Major trauma and the use of tranexamic acid in children. November 2012. https://res.cloudinary.com/studio-republic/images/v1635621542/Major_Trauma_and_the_use_of_Tranexamic_Acid_in_Children_Nov2012/Major_Trauma_and_the_use_of_Tranexamic_Acid_in_Children_Nov2012.pdf?_i=AA
  • 170 Meshkin D, Yazer MH, Dunbar NM, Spinella PC, Leeper CM. Low titer group O whole blood utilization in pediatric trauma resuscitation: a national survey. Transfusion 2022; 62 (Suppl. 01) S63-S71
  • 171 Green RW, Cotton BA. Neonatal trauma resuscitation: successful use of low-titer O+ whole blood in a 4-day-old infant with hemorrhagic shock. Transfusion 2025; 65 (Suppl. 01) S181-S184
  • 172 Carr NR, Bahr TM, Ohls RK. et al. Low-titer type O whole blood for transfusing perinatal patients after acute hemorrhage: a case series. AJP Rep 2024; 14 (02) e129-e132
  • 173 Sokou R, Gounari EA, Tsantes AG. et al. Bridging the evidence-to-practice gap: Advancing neonatal blood transfusion. A narrative review of recent guidelines. Blood Rev 2025; 71: 101282