CC BY 4.0 · TH Open 2025; 09: a25994925
DOI: 10.1055/a-2599-4925
Review Article

HSP47 at the Crossroads of Thrombosis and Collagen Dynamics: Unlocking Therapeutic Horizons and Debates

1   Department of Hematology, Assistance Publique – Hôpitaux de Paris, Georges Pompidou European Hospital, Paris, France
2   Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France
,
Alberto F. Chocron
3   Research Service, Miami Veteran Administration Medical Center, Miami, Florida, United States
4   Department of Medicine, BTT Medical Institute, Aventura, Florida, United States
,
M. Marc Abreu
4   Department of Medicine, BTT Medical Institute, Aventura, Florida, United States
5   Department of Engineering, BTT Medical Institute, Aventura, Florida, United States
› Author Affiliations

Abstract

Heat shock protein 47 (HSP47), a collagen-specific molecular chaperone encoded by the SERPINH1 gene, has emerged as a groundbreaking focus in thrombosis research. Recent findings published in “Science” have revolutionized our understanding of thrombosis, identifying HSP47 as a critical mediator in a new thrombosis target for treatment. This discovery not only unveils a novel pathway in thrombosis but also opens new avenues for therapeutic intervention. HSP47's significance extends beyond thrombosis, influencing pathological processes such as fibrosis and cancer. In fibrosis, its upregulation promotes collagen deposition, while its dysregulation in osteogenesis imperfecta (OI) Type X underscores the protein's indispensable role in collagen biosynthesis. The therapeutic challenge lies in balancing HSP47 inhibition to reduce fibrotic burden without impairing its essential physiological functions. In cancer, HSP47 plays dual roles. It supports tumor progression through collagen stabilization and metastasis facilitation while contributing to tissue repair under hyperthermia treatment combined with radiotherapy or chemotherapy. However, its overexpression can exacerbate tumor aggressiveness via mechanisms such as angiogenesis and epithelial–mesenchymal transition.

This review emphasizes the pivotal discovery of HSP47's thrombogenic role and its broader implications in disease biology. These findings mark a paradigm shift in thrombosis research and underscore the potential of HSP47 as a target in diverse pathological contexts, from platelet-driven diseases to fibrotic and oncological disorders.

Authors' Contributions

D.M.S. and M.M.A. supervised the work and wrote the paper. A.F.C. participated in writing and editing of the paper.




Publication History

Received: 05 February 2025

Accepted: 22 April 2025

Article published online:
05 June 2025

© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

Bibliographical Record
David M. Smadja, Alberto F. Chocron, M. Marc Abreu. HSP47 at the Crossroads of Thrombosis and Collagen Dynamics: Unlocking Therapeutic Horizons and Debates. TH Open 2025; 09: a25994925.
DOI: 10.1055/a-2599-4925
 
  • References

  • 1 Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol 2011; 3 (01) a004978
  • 2 Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem 2009; 78: 929-958
  • 3 Fujii KK, Taga Y, Sakai T. et al. Lowering the culture temperature corrects collagen abnormalities caused by HSP47 gene knockout. Sci Rep 2019; 9 (01) 17433
  • 4 Nagai N, Hosokawa M, Itohara S. et al. Embryonic lethality of molecular chaperone hsp47 knockout mice is associated with defects in collagen biosynthesis. J Cell Biol 2000; 150 (06) 1499-1506
  • 5 Ito S, Nagata K. Roles of the endoplasmic reticulum-resident, collagen-specific molecular chaperone Hsp47 in vertebrate cells and human disease. J Biol Chem 2019; 294 (06) 2133-2141
  • 6 Ito S, Nagata K. Biology of Hsp47 (Serpin H1), a collagen-specific molecular chaperone. Semin Cell Dev Biol 2017; 62: 142-151
  • 7 Singh MK, Shin Y, Ju S. et al. Heat shock response and heat shock proteins: Current understanding and future opportunities in human diseases. Int J Mol Sci 2024; 25 (08) 4209
  • 8 Niwa T, Kanamori T, Ueda T, Taguchi H. Global analysis of chaperone effects using a reconstituted cell-free translation system. Proc Natl Acad Sci U S A 2012; 109 (23) 8937-8942
  • 9 Oecal S, Socher E, Uthoff M. et al. The pH-dependent client release from the collagen-specific chaperone HSP47 is triggered by a tandem histidine pair. J Biol Chem 2016; 291 (24) 12612-12626
  • 10 Taguchi T, Razzaque MS. The collagen-specific molecular chaperone HSP47: is there a role in fibrosis?. Trends Mol Med 2007; 13 (02) 45-53
  • 11 Bellaye P-S, Burgy O, Bonniaud P, Kolb M. HSP47: a potential target for fibrotic diseases and implications for therapy. Expert Opin Ther Targets 2021; 25 (01) 49-62
  • 12 Kaiser WJ, Holbrook L-M, Tucker KL, Stanley RG, Gibbins JM. A functional proteomic method for the enrichment of peripheral membrane proteins reveals the collagen binding protein Hsp47 is exposed on the surface of activated human platelets. J Proteome Res 2009; 8 (06) 2903-2914
  • 13 Sasikumar P, AlOuda KS, Kaiser WJ. et al. The chaperone protein HSP47: a platelet collagen binding protein that contributes to thrombosis and hemostasis. J Thromb Haemost 2018; 16 (05) 946-959
  • 14 Thienel M, Müller-Reif JB, Zhang Z. et al. Immobility-associated thromboprotection is conserved across mammalian species from bear to human. Science 2023; 380 (6641): 178-187
  • 15 Herbert A. Osteogenesis imperfecta type 10 and the cellular scaffolds underlying common immunological diseases. Genes Immun 2024; 25 (04) 265-276
  • 16 Myllyharju J, Kivirikko KI. Collagens and collagen-related diseases. Ann Med 2001; 33 (01) 7-21
  • 17 Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol 2021; 18 (03) 151-166
  • 18 Karsdal MA, Daniels SJ, Holm Nielsen S. et al. Collagen biology and non-invasive biomarkers of liver fibrosis. Liver Int 2020; 40 (04) 736-750
  • 19 Staab-Weijnitz CA. Fighting the fiber: Targeting collagen in lung fibrosis. Am J Respir Cell Mol Biol 2022; 66 (04) 363-381
  • 20 Bülow RD, Boor P. Extracellular matrix in kidney fibrosis: More than just a scaffold. J Histochem Cytochem 2019; 67 (09) 643-661
  • 21 Eddy AA. Overview of the cellular and molecular basis of kidney fibrosis. Kidney Int Suppl (2011) 2014; 4 (01) 2-8
  • 22 Zhang X, Zhang X, Huang W, Ge X. The role of heat shock proteins in the regulation of fibrotic diseases. Biomed Pharmacother 2021; 135: 111067
  • 23 Miyamura T, Sakamoto N, Kakugawa T. et al. Small molecule inhibitor of HSP47 prevents pro-fibrotic mechanisms of fibroblasts in vitro. Biochem Biophys Res Commun 2020; 530 (03) 561-565
  • 24 Bellaye P-S, Burgy O, Causse S, Garrido C, Bonniaud P. Heat shock proteins in fibrosis and wound healing: good or evil?. Pharmacol Ther 2014; 143 (02) 119-132
  • 25 Ishii H, Mukae H, Kakugawa T. et al. Increased expression of collagen-binding heat shock protein 47 in murine bleomycin-induced pneumopathy. Am J Physiol Lung Cell Mol Physiol 2003; 285 (04) L957-L963
  • 26 Kakugawa T, Mukae H, Hishikawa Y. et al. Localization of HSP47 mRNA in murine bleomycin-induced pulmonary fibrosis. Virchows Arch 2010; 456 (03) 309-315
  • 27 Ham SY, Pyo MJ, Kang M. et al. HSP47 increases the expression of type I collagen in fibroblasts through IRE1α activation, XBP1 splicing, and nuclear translocation of β-catenin. Cells 2024; 13 (06) 527
  • 28 Nakayama S, Mukae H, Sakamoto N. et al. Pirfenidone inhibits the expression of HSP47 in TGF-beta1-stimulated human lung fibroblasts. Life Sci 2008; 82 (3-4): 210-217
  • 29 Hisatomi K, Mukae H, Sakamoto N. et al. Pirfenidone inhibits TGF-β1-induced over-expression of collagen type I and heat shock protein 47 in A549 cells. BMC Pulm Med 2012; 12: 24
  • 30 Kakugawa T, Mukae H, Hayashi T. et al. Expression of HSP47 in usual interstitial pneumonia and nonspecific interstitial pneumonia. Respir Res 2005; 6 (01) 57
  • 31 Kim DJ, Park SH, Sheen MR. et al. Comparison of experimental lung injury from acute renal failure with injury due to sepsis. Respiration 2006; 73 (06) 815-824
  • 32 Razzaque MS, Nazneen A, Taguchi T. Immunolocalization of collagen and collagen-binding heat shock protein 47 in fibrotic lung diseases. Mod Pathol 1998; 11 (12) 1183-1188
  • 33 Iwashita T, Kadota J, Naito S. et al. Involvement of collagen-binding heat shock protein 47 and procollagen type I synthesis in idiopathic pulmonary fibrosis: contribution of type II pneumocytes to fibrosis. Hum Pathol 2000; 31 (12) 1498-1505
  • 34 Sakamoto N, Okuno D, Tokito T. et al. HSP47: A therapeutic target in pulmonary fibrosis. Biomedicines 2023; 11 (09) 2387
  • 35 Yokota S, Kubota H, Matsuoka Y. et al. Prevalence of HSP47 antigen and autoantibodies to HSP47 in the sera of patients with mixed connective tissue disease. Biochem Biophys Res Commun 2003; 303 (02) 413-418
  • 36 Hilberg F, Roth GJ, Krssak M. et al. BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res 2008; 68 (12) 4774-4782
  • 37 Hostettler KE, Zhong J, Papakonstantinou E. et al. Anti-fibrotic effects of nintedanib in lung fibroblasts derived from patients with idiopathic pulmonary fibrosis. Respir Res 2014; 15 (01) 157
  • 38 Wollin L, Wex E, Pautsch A. et al. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J 2015; 45 (05) 1434-1445
  • 39 Wollin L, Distler JHW, Redente EF. et al. Potential of nintedanib in treatment of progressive fibrosing interstitial lung diseases. Eur Respir J 2019; 54 (03) 1900161
  • 40 Wollin L, Maillet I, Quesniaux V, Holweg A, Ryffel B. Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J Pharmacol Exp Ther 2014; 349 (02) 209-220
  • 41 Knüppel L, Ishikawa Y, Aichler M. et al. A novel antifibrotic mechanism of nintedanib and pirfenidone. Inhibition of collagen fibril assembly. Am J Respir Cell Mol Biol 2017; 57 (01) 77-90
  • 42 Lehmann M, Buhl L, Alsafadi HN. et al. Differential effects of Nintedanib and Pirfenidone on lung alveolar epithelial cell function in ex vivo murine and human lung tissue cultures of pulmonary fibrosis. Respir Res 2018; 19 (01) 175
  • 43 Wu W, Qiu L, Wu J, Liu X, Zhang G. Efficacy and safety of pirfenidone in the treatment of idiopathic pulmonary fibrosis patients: a systematic review and meta-analysis of randomised controlled trials. BMJ Open 2021; 11 (12) e050004
  • 44 Kalayarasan S, Sriram N, Sudhandiran G. Diallyl sulfide attenuates bleomycin-induced pulmonary fibrosis: critical role of iNOS, NF-kappaB, TNF-alpha and IL-1beta. Life Sci 2008; 82 (23-24): 1142-1153
  • 45 Chen L, Wang T, Wang X. et al. Blockade of advanced glycation end product formation attenuates bleomycin-induced pulmonary fibrosis in rats. Respir Res 2009; 10 (01) 55
  • 46 Liu J, Jin Z, Wang X, Jakoš T, Zhu J, Yuan Y. RAGE pathways play an important role in regulation of organ fibrosis. Life Sci 2023; 323: 121713
  • 47 Goulet S, Bihl MP, Gambazzi F, Tamm M, Roth M. Opposite effect of corticosteroids and long-acting beta(2)-agonists on serum- and TGF-beta(1)-induced extracellular matrix deposition by primary human lung fibroblasts. J Cell Physiol 2007; 210 (01) 167-176
  • 48 Vergoten G, Bailly C. Insights into the mechanism of action of the degraded limonoid prieurianin. Int J Mol Sci 2024; 25 (07) 3597
  • 49 Satoh M, Hirayoshi K, Yokota S, Hosokawa N, Nagata K. Intracellular interaction of collagen-specific stress protein HSP47 with newly synthesized procollagen. J Cell Biol 1996; 133 (02) 469-483
  • 50 Ko MK, Kay EP. Hsp47-dependent and -independent intracellular trafficking of type I collagen in corneal endothelial cells. Mol Vis 1999; 5: 17
  • 51 Liu Y, Liu J, Quimbo A. et al. Anti-HSP47 siRNA lipid nanoparticle ND-L02-s0201 reverses interstitial pulmonary fibrosis in preclinical rat models. ERJ Open Res 2021; 7 (02) 00733-02020
  • 52 Okuno D, Sakamoto N, Tagod MSO. et al. Screening of inhibitors targeting heat shock protein 47 involved in the development of idiopathic pulmonary fibrosis. ChemMedChem 2021; 16 (16) 2515-2523
  • 53 Wu S, Liang C, Xie X. et al. Hsp47 inhibitor Col003 attenuates collagen-induced platelet activation and cerebral ischemic-reperfusion injury in rats. Front Pharmacol 2022; 12: 792263
  • 54 Chen J-J, Jin P-S, Zhao S. et al. Effect of heat shock protein 47 on collagen synthesis of keloid in vivo. ANZ J Surg 2011; 81 (06) 425-430
  • 55 Hagiwara S, Iwasaka H, Matsumoto S, Noguchi T. An antisense oligonucleotide to HSP47 inhibits paraquat-induced pulmonary fibrosis in rats. Toxicology 2007; 236 (03) 199-207
  • 56 Hagiwara S, Iwasaka H, Matsumoto S, Noguchi T. Antisense oligonucleotide inhibition of heat shock protein (HSP) 47 improves bleomycin-induced pulmonary fibrosis in rats. Respir Res 2007; 8 (01) 37
  • 57 Huang J-Q, Tao R, Li L. et al. Involvement of heat shock protein 47 in Schistosoma japonicum-induced hepatic fibrosis in mice. Int J Parasitol 2014; 44 (01) 23-35
  • 58 Morry J, Ngamcherdtrakul W, Gu S. et al. Dermal delivery of HSP47 siRNA with NOX4-modulating mesoporous silica-based nanoparticles for treating fibrosis. Biomaterials 2015; 66: 41-52
  • 59 Xia Z, Abe K, Furusu A. et al. Suppression of renal tubulointerstitial fibrosis by small interfering RNA targeting heat shock protein 47. Am J Nephrol 2008; 28 (01) 34-46
  • 60 Obata Y, Nishino T, Kushibiki T. et al. HSP47 siRNA conjugated with cationized gelatin microspheres suppresses peritoneal fibrosis in mice. Acta Biomater 2012; 8 (07) 2688-2696
  • 61 Sato Y, Murase K, Kato J. et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol 2008; 26 (04) 431-442
  • 62 Ishiwatari H, Sato Y, Murase K. et al. Treatment of pancreatic fibrosis with siRNA against a collagen-specific chaperone in vitamin A-coupled liposomes. Gut 2013; 62 (09) 1328-1339
  • 63 Otsuka M, Shiratori M, Chiba H. et al. Treatment of pulmonary fibrosis with siRNA against a collagen-specific chaperone HSP47 in vitamin A-coupled liposomes. Exp Lung Res 2017; 43 (6-7): 271-282
  • 64 Ohigashi H, Hashimoto D, Hayase E. et al. Ocular instillation of vitamin A-coupled liposomes containing HSP47 siRNA ameliorates dry eye syndrome in chronic GVHD. Blood Adv 2019; 3 (07) 1003-1010
  • 65 Yamakawa T, Ohigashi H, Hashimoto D. et al. Vitamin A-coupled liposomes containing siRNA against HSP47 ameliorate skin fibrosis in chronic graft-versus-host disease. Blood 2018; 131 (13) 1476-1485
  • 66 Zhu J, Xiong G, Fu H, Evers BM, Zhou BP, Xu R. Chaperone Hsp47 drives malignant growth and invasion by modulating an ECM gene network. Cancer Res 2015; 75 (08) 1580-1591
  • 67 Mori K, Toiyama Y, Okugawa Y. et al. Preoperative heat shock protein 47 levels identify colorectal cancer patients with lymph node metastasis and poor prognosis. Oncol Lett 2020; 20 (06) 333
  • 68 Mori K, Toiyama Y, Otake K. et al. Proteomics analysis of differential protein expression identifies heat shock protein 47 as a predictive marker for lymph node metastasis in patients with colorectal cancer. Int J Cancer 2017; 140 (06) 1425-1435
  • 69 Huang X, Gollin SM, Raja S, Godfrey TE. High-resolution mapping of the 11q13 amplicon and identification of a gene, TAOS1, that is amplified and overexpressed in oral cancer cells. Proc Natl Acad Sci U S A 2002; 99 (17) 11369-11374
  • 70 Shi R, Yu R, Lian F. et al. Targeting HSP47 for cancer treatment. Anticancer Drugs 2024; 35 (07) 623-637
  • 71 Xiong G, Chen J, Zhang G. et al. Hsp47 promotes cancer metastasis by enhancing collagen-dependent cancer cell-platelet interaction. Proc Natl Acad Sci U S A 2020; 117 (07) 3748-3758
  • 72 Tian S, Peng P, Li J. et al. SERPINH1 regulates EMT and gastric cancer metastasis via the Wnt/β-catenin signaling pathway. Aging (Albany NY) 2020; 12 (04) 3574-3593
  • 73 Chen J, Wang S, Zhang Z, Richards CI, Xu R. Heat shock protein 47 (HSP47) binds to discoidin domain-containing receptor 2 (DDR2) and regulates its protein stability. J Biol Chem 2019; 294 (45) 16846-16854
  • 74 Yoneda A, Minomi K, Tamura Y. HSP47 promotes metastasis of breast cancer by interacting with myosin IIA via the unfolded protein response transducer IRE1α. Oncogene 2020; 39 (23) 4519-4537
  • 75 Wu ZB, Cai L, Lin SJ. et al. Heat shock protein 47 promotes glioma angiogenesis. Brain Pathol 2016; 26 (01) 31-42
  • 76 Ma W, Ou T, Cui X. et al. HSP47 contributes to angiogenesis by induction of CCL2 in bladder cancer. Cell Signal 2021; 85: 110044
  • 77 Recchia FM, Xu L. Differential expression of the collagen-binding protein Hsp47 in experimental retinal neovascularization. Invest Ophthalmol Vis Sci 2005; 46: 3162
  • 78 Wendelboe A, Weitz JI. Global health burden of venous thromboembolism. Arterioscler Thromb Vasc Biol 2024; 44 (05) 1007-1011
  • 79 Khan F, Tritschler T, Kahn SR, Rodger MA. Venous thromboembolism. Lancet 2021; 398 (10294): 64-77
  • 80 AlOuda SK, Sasikumar P, AlThunayan T. et al. Role of heat shock protein 47 in platelet glycoprotein VI dimerization and signaling. Res Pract Thromb Haemost 2023; 7 (06) 102177
  • 81 Crescente M, Pluthero FG, Li L. et al. Intracellular trafficking, localization, and mobilization of platelet-borne Thiol isomerases. Arterioscler Thromb Vasc Biol 2016; 36 (06) 1164-1173
  • 82 Liu D, Razzaque MS, Cheng M, Taguchi T. The renal expression of heat shock protein 47 and collagens in acute and chronic experimental diabetes in rats. Histochem J 2001; 33 (11-12): 621-628
  • 83 Manderstedt E, Lind-Halldén C, Halldén C. et al.; Regeneron Genetics Center. SERPINH1 variants and thrombotic risk among middle-aged and older adults: a population-based cohort study. J Thromb Haemost 2024; 22 (03) 869-873
  • 84 Cai H, Sasikumar P, Little G. et al. Identification of HSP47 binding site on native collagen and its implications for the development of HSP47 inhibitors. Biomolecules 2021; 11 (07) 983
  • 85 Charles S, Fatrara T, Bouriche T. et al. Tissue factor-bearing extracellular vesicles, procoagulant phospholipids and D-dimer as potential biomarkers for venous thromboembolism in patients with newly diagnosed multiple myeloma: A comprehensive analysis. Thromb Res 2025; 247: 109256
  • 86 Lucotti S, Ogitani Y, Kenific CM. et al. Extracellular vesicles from the lung pro-thrombotic niche drive cancer-associated thrombosis and metastasis via integrin beta 2. Cell 2025; 188 (06) 1642-1661.e24
  • 87 Shibata C, Otsuka M, Ishigaki K, Seimiya T, Kishikawa T, Fujishiro M. CA19-9-positive extracellular vesicle is a risk factor for cancer-associated thrombosis in pancreatic cancer. Gastro Hep Adv 2024; 3 (04) 551-561
  • 88 Osorio LA, Lozano M, Soto P. et al. Levels of small extracellular vesicles containing hERG-1 and Hsp47 as potential biomarkers for cardiovascular diseases. Int J Mol Sci 2024; 25 (09) 4913
  • 89 Kajikawa Y, Morihara T, Sakamoto H. et al. Platelet-rich plasma enhances the initial mobilization of circulation-derived cells for tendon healing. J Cell Physiol 2008; 215 (03) 837-845
  • 90 Wu C-L, Lee S-S, Tsai C-H, Lu KH, Zhao JH, Chang YC. Platelet-rich fibrin increases cell attachment, proliferation and collagen-related protein expression of human osteoblasts. Aust Dent J 2012; 57 (02) 207-212
  • 91 Junkiert-Czarnecka A, Pilarska-Deltow M, Bąk A, Heise M, Haus O. The role of gene encoding collagen secretion protein (SERPINH1) in the pathogenesis of a hypermobile type of Ehlers-Danlos syndrome. Postepy Dermatol Alergol 2023; 40 (01) 102-106
  • 92 Smadja DM. Hyperthermia for targeting cancer and cancer stem cells: Insights from novel cellular and clinical approaches. Stem Cell Rev Rep 2024; 20 (06) 1532-1539
  • 93 Mallory M, Gogineni E, Jones GC, Greer L, Simone II CB. Therapeutic hyperthermia: The old, the new, and the upcoming. Crit Rev Oncol Hematol 2016; 97: 56-64
  • 94 Smadja DM, Abreu MM. Hyperthermia and targeting heat shock proteins: innovative approaches for neurodegenerative disorders and Long COVID. Front Neurosci 2025; 19: 1475376
  • 95 Abreu MM, Chocron AF, Smadja DM. From cold to hot: mechanisms of hyperthermia in modulating tumor immunology for enhanced immunotherapy. Front Immunol 2025; 16: 1487296
  • 96 Lukácsi S, Munkácsy G, Győrffy B. Harnessing hyperthermia: Molecular, cellular, and immunological insights for enhanced anticancer therapies. Integr Cancer Ther 2024; 23: 15 347354241242094
  • 97 Sharma HS, Hoopes PJ. Hyperthermia induced pathophysiology of the central nervous system. Int J Hyperthermia 2003; 19 (03) 325-354
  • 98 Beemelmanns A, Zanuzzo FS, Xue X, Sandrelli RM, Rise ML, Gamperl AK. The transcriptomic responses of Atlantic salmon (Salmo salar) to high temperature stress alone, and in combination with moderate hypoxia. BMC Genomics 2021; 22 (01) 261
  • 99 Akbarzadeh A, Günther OP, Houde AL. et al. Developing specific molecular biomarkers for thermal stress in salmonids. BMC Genomics 2018; 19 (01) 749
  • 100 Nagata K, Saga S, Yamada KM. A major collagen-binding protein of chick embryo fibroblasts is a novel heat shock protein. J Cell Biol 1986; 103 (01) 223-229
  • 101 Verrico AK, Haylett AK, Moore JV. In vivo expression of the collagen-related heat shock protein HSP47, following hyperthermia or photodynamic therapy. Lasers Med Sci 2001; 16 (03) 192-198
  • 102 Abdelnasir A, Sun JR, Cheng YF. et al. Evaluation of Hsp47 expression in heat-stressed rat myocardial cells in vitro and in vivo. Genet Mol Res 2014; 13 (04) 10787-10802
  • 103 Dams SD, De Liefde-van Beest M, Nuijs AM. et al. Pulsed heat shocks enhance procollagen type I and procollagen type III expression in human dermal fibroblasts. Skin Res Technol 2010; 16: 354-364 . Accessed October 1, 2024 at: https://onlinelibrary.wiley.com/doi/10.1111/j.1600-0846.2010.00441.x
  • 104 Haylett AK, Higley K, Chiu M, Shackley DC, Moore JV. Collagen secretion after photodynamic therapy versus scar-inducing anti-cancer modalities: an in vitro study. Photochem Photobiol Sci 2002; 1 (09) 673-677
  • 105 Shackley DC, Haylett A, Whitehurst C. et al. Comparison of the cellular molecular stress responses after treatments used in bladder cancer. BJU Int 2002; 90 (09) 924-932
  • 106 Verrico AK, Moore JV. Expression of the collagen-related heat shock protein HSP47 in fibroblasts treated with hyperthermia or photodynamic therapy. Br J Cancer 1997; 76 (06) 719-724
  • 107 Miyaishi O, Ito Y, Kozaki K. et al. Age-related attenuation of HSP47 heat response in fibroblasts. Mech Ageing Dev 1995; 77 (03) 213-226
  • 108 Tong M, Zhang S, Ma P. et al. Efficacy analysis of intermittent pneumatic compression combined with hyperthermia at different temperatures for prevention of deep vein thrombosis after simulated orthopaedic surgery in male rabbits. Am J Transl Res 2024; 16 (10) 5337-5346
  • 109 Khan ES, Däinghaus T. HSP47 in human diseases: Navigating pathophysiology, diagnosis and therapy. Clin Transl Med 2024; 14 (08) e1755
  • 110 Morito D, Nagata K. ER stress proteins in autoimmune and inflammatory diseases. Front Immunol 2012; 3: 48
  • 111 Fujimoto M, Hamaguchi Y, Yazawa N, Komura K, Takehara K, Sato S. Autoantibodies to a collagen-specific molecular chaperone, heat-shock protein 47, in systemic sclerosis. Clin Exp Immunol 2004; 138 (03) 534-539
  • 112 Kakugawa T, Yokota S, Mukae H. et al. High serum concentrations of autoantibodies to HSP47 in nonspecific interstitial pneumonia compared with idiopathic pulmonary fibrosis. BMC Pulm Med 2008; 8: 23
  • 113 Izquierdo E, Cañete JD, Celis R. et al. Synovial fibroblast hyperplasia in rheumatoid arthritis: clinicopathologic correlations and partial reversal by anti-tumor necrosis factor therapy. Arthritis Rheum 2011; 63 (09) 2575-2583
  • 114 Kalayarasan S, Sriram N, Sudhandiran G. Life Sci 2008; 82 (23-24): 1142-1153
  • 115 Liu Y, Liu J, Quimbo A. et al Anti-HSP47 siRNA lipid nanoparticle ND-L02-s0201 reverses interstitial pulmonary fibrosis in preclinical rat models. ERJ Open Res 2021; 7 (02) 0733-2020