Subscribe to RSS
DOI: 10.1055/a-2597-0689
Requirements for Physico-Technical Quality Assurance in the Framework of Early Detection of Lung Cancer
Article in several languages: English | deutschAuthors
Abstract
Summary
According to the text of the Lung Cancer Screening Ordinance on the permissibility
of using low-dose computed tomography to screen smokers (LuKrFrühErkV, §7 Quality
Assurance, [1]), the “radiation protection officer must establish and operate a comprehensive quality
assurance system. This must take account of organizational, medical, and technical
aspects, in particular [...] 2. the diagnostic image quality of the computed tomography
scan, 3. the physical-technical parameters for the acquisition of the computed tomography
scan [...]”.
The German Radiological Society (DRG) considers itself responsible for making recommendations
regarding the implementation of such a quality assurance system, in order to provide
users with legal certainty and ensure patient safety.
The DRG’s Physics and Technology Working Group has thus identified the main issues
regarding quality assurance for technology, outlined the related challenges, and proposed
potential areas for future investigation and resolution (see sections I–V).
Existing quality assurance measures for technology must be checked for their suitability
with regard to a low-dose screening program and adapted, if necessary.
Complex additional constancy tests and the use of special (anthropomorphic) phantoms
are not currently considered necessary. The tasks of manufacturers and medical physicists
were refined further, and it was recommended that reference centers should be established
as soon as possible.
Key Points
-
Constancy testing methods for CT are largely sufficient for lung cancer screening.
-
Daily air calibration is recommended to ensure consistent image quality.
-
Anthropomorphic phantoms are not currently required for quality assurance.
-
Manufacturers must provide protocols that meet LuKrFrühErkV requirements.
Citation Format
Eßeling R, Konrad M, Prokesch H et al. Requirements for Physico-Technical Quality Assurance in the Framework of Early Detection of Lung Cancer. Rofo 2026; DOI 10.1055/a-2597-0689
Publication History
Received: 29 April 2025
Accepted after revision: 18 November 2025
Article published online:
17 December 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) (2024). Verordnung über die Zulässigkeit der Anwendung der Niedrigdosis-Computertomografie zur Früherkennung von Lungenkrebs bei rauchenden Personen (Lungenkrebs-Früherkennungs-Verordnung – LuKrFrühErkV). Accessed May 15, 2024 at: https://www.gesetze-im-internet.de/lukrfr_herkv/
- 2 Beschluss des Gemeinsamen Bundesausschusses über eine Änderung der Krebsfrüherkennungs-Richtlinie (KFE-RL). Einführung der Lungenkrebsfrüherkennung mittels Niedrigdosis-Computertomografie bei Rauchern. https://www.g-ba.de/downloads/39–261–7301/2025–06–18_KFE-RL_Einf-Lungenkrebsfrueherkennung-Niedrigdosis-CT-Raucher.pdf
- 3 DIN EN IEC 61223–3-5 (2024–07) Bewertung und routinemäßige Prüfung in Abteilungen für medizinische Bildgebung – Teil 3–5: Abnahmeprüfungen und Konstanzprüfung: Leistungsmerkmale zur Bildgebung von Röntgeneinrichtungen für Computertomografie.
- 4 Korst RJ, Lee BE. et al. The utility of automated volumetric growth analysis in a dedicated pulmonary nodule clinic. J Thorac Cardiovasc Surg 2011; 142 (02) 372-377
- 5 Devaraj A, van Ginneken B. et al. Use of volumetry for lung nodule management: theory and practice. Radiology 2017; 284 (03) 630-644
- 6 Bartlett EC, Kemp S. et al. Defining growth in small pulmonary nodules using volumetry: results from a “coffee-break” CT study and implications for current nodule management guidelines. Eur Radiol 2022; 32 (03) 1912-1920
- 7 Guedes Pinto E, Penha D. et al. Factors influencing the outcome of volumetry tools for pulmonary nodule analysis: a systematic review and attempted meta-analysis. Insights Imaging 2023; 14 (01) 152
- 8 D’hondt L, Kellens PJ. et al. Absolute ground truth-based validation of computer-aided nodule detection and volumetry in low-dose CT imaging. Phys Med 2024; 121: 103344
- 9 Rydzak CE, Armato SG. et al. Quality assurance and quantitative imaging biomarkers in low-dose CT lung cancer screening. Br J Radiol 2018;
- 10 Hahn HK, May MS. et al. Anforderungen an die Qualitätssicherung von KI-Modellen für die Lungenkrebs-Früherkennung. 2025
- 11 Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) S II 3 – 1510/000–2024.0004 Rahmenrichtlinie zur Qualitätssicherung bei der Anwendung ionisierender Strahlung oder radioaktiver Stoffe am Menschen nach den §§ 115, 116 und 117 Strahlenschutzverordnung (StrlSchV), 10. 01.2025.
- 12 Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) S II 3 – 1514/002–2024.0001 Qualitätssicherungs-Richtlinie für Abnahme- und Konstanzprüfungen gemäß den §§ 115, 116 und 117 Strahlenschutzverordnung (StrlSchV) bei Röntgeneinrichtungen zur Untersuchung am Menschen, 27.05.2025.
- 13 Konrad MFG, Nischwitz E. et al. CT acquisition protocols for lung cancer screening—current landscape and the urgent need for consistency. Insights Imaging 2025; 16: 72
- 14 Iball GR, Darby M. et al. Establishing scanning protocols for a CT lung cancer screening trial in the UK. Br J Radiol 2021; 94: 20201343
- 15 QIBA Small Lung Nodule Biomarker Committee, Small Lung Nodule Volume Assessment and Monitoring in Low Dose CT Screening Profile (2023), Quantitative Imaging Biomarkers Alliance.
- 16 ESTI-LCS Technical Standards, European Society of Thoracic Imaging (2019). https://www.myesti.org/content-esti/uploads/ESTI-LCS-technical-standards_2019–06–14.pdf
- 17 AAPM Lung Cancer Screening CT Protocols Version 6.0 2023, American Association of Physicists in Medicine; 2023. https://www.aapm.org/pubs/ctprotocols/documents/lungcancerscreeningct.pdf
- 18 Honda O, Sumikawa H. et al. Computer-assisted lung nodule volumetry from multi-detector row CT: influence of image reconstruction parameters. Eur J Radiol 2007; 62 (01) 106-113
- 19 Vonder M, Dorrius MD, Vliegenthart R. Latest CT technologies in lung cancer screening: protocols and radiation dose reduction. Transl Lung Cancer Res 2021; 10 (02) 1154-1164
- 20 Vogel-Claussen J, Lasch F. et al. Design and Rationale of the HANSE Study: A Holistic German Lung Cancer Screening Trial Using Low-Dose Computed Tomography. Fortschr Röntgenstr 2022; 194: 1333-1345
- 21 AG Diagnostische Radiologie arbeits- und umweltbedingter Erkrankungen (2020), CT-Protokolle der AG DRauE. https://www.ag-draue.drg.de/de-DE/1240/ct-protokolle/
- 22 Bundesamt für Strahlenschutz (2021), Lungenkrebsfrüherkennung mittels Niedrigdosis-Computertomografie Wissenschaftliche Bewertung des Bundesamtes für Strahlenschutz gemäß § 84 Absatz 3 Strahlenschutzgesetz BfS-34/21.
- 23 Fleischmann D. CT artifacts: causes and reduction techniques. Imaging in Medicine 2012;
- 24 Gierada DS, Garg K. et al. CT quality assurance in the lung screening study component of the National Lung Screening Trial: implications for multicenter imaging trials. AJR Am J Roentgenol 2009; 193 (02) 419-424
- 25 Wielpütz MO, Wroblewski J. et al. Computer-aided detection of artificial pulmonary nodules using an ex vivo lung phantom: influence of exposure parameters and iterative reconstruction. Eur J Radiol 2015; 84 (05) 1005-1011
- 26 Hernandez-Giron I, Michiel den Harder J. et al. Development of a 3D printed anthropomorphic lung phantom for image quality assessment in CT. Phys Med 2019; 57: 47-57
- 27 Richtlinie 2013/59/Euratom des Rates vom 5. Dezember 2013 zur Festlegung grundlegender Sicherheitsnormen für den Schutz vor den Gefahren einer Exposition gegenüber ionisierender Strahlung und zur Aufhebung der Richtlinien 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom und 2003/122/Euratom. https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32013L0059
- 28 Vogel-Claussen J, Blum TG. et al. Positionspapier zur Implementierung eines nationalen organisierten Programms in Deutschland zur Früherkennung von Lungenkrebs in Risikopopulationen mittels Low-dose-CT-Screening inklusive Management von abklärungsbedürftigen Screeningbefunden. Fortschr Röntgenstr 2024; 196: 134-153
