Planta Med
DOI: 10.1055/a-2596-0010
Reviews

Mechanistic Insights into Propolis in Targeting Type 2 Diabetes Mellitus: A Systematic Review

Chee Ning Wong
1   M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia
,
Siew-Keah Lee
1   M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia
,
Kai Bin Liew
2   Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Selangor, Malaysia
,
Yik-Ling Chew
3   Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Wilayah Persekutuan, Malaysia
,
Ang-Lim Chua
4   Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
› Author Affiliations

This work is supported by the Ministry of Higher Education (MOHE), Malaysia, through the Fundamental Research Grant Scheme (FRGS/1/2022/SKK10/UTAR/02/1), Universiti Tunku Abdul Rahman, Malaysia, through UTAR-Research Grant (IPSR/RMC/UTARRF/2024-C1/L04).

Abstract

Type 2 diabetes mellitus (T2DM) is a major global health concern characterized by insulin resistance and impaired glucose metabolism. Growing interest in natural therapies has led to the exploration of propolis, a resinous bee product, for its potential anti-diabetic effects. This review examines the mechanisms by which propolis may aid in T2DM management. A literature search was conducted in SCOPUS and PubMed using the terms (Propolis) AND (diabetes OR “insulin resistance” OR hyperglycemia), focusing on studies published from 2014 onwards. The search yielded 384 and 207 records in SCOPUS and PubMed, respectively. After screening and full-text review, 42 studies met the inclusion criteria. Key variables analyzed included the type and source of propolis, experimental models, dosage, treatment duration, and primary and secondary outcomes. Findings highlight multiple mechanisms through which propolis may benefit T2DM, including enhancing pancreatic β-cell function, improving insulin sensitivity, regulating glucose and lipid metabolism, modulating gut microbiota, and reducing oxidative stress and inflammation. Some studies also reported protective effects on renal and hepatic function. Overall, propolis exhibits promising potential as a complementary therapy for T2DM. However, further well-designed clinical trials are necessary to confirm its efficacy, determine optimal dosing, and identify key bioactive compounds responsible for its therapeutic effects. Future research should focus on optimizing its clinical application for diabetes management.



Publication History

Received: 05 November 2024

Accepted after revision: 22 April 2025

Accepted Manuscript online:
28 April 2025

Article published online:
12 May 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 Magliano DJ, Boyko EJ. IDF Diabetes Atlas. 10th ed. Brussels: International Diabetes Federation; 2021
  • 2 Altuntaş Ü, Güzel İ, Özçelik B. Phenolic constituents, antioxidant and antimicrobial activity and clustering analysis of propolis samples based on PCA from different regions of Anatolia. Molecules 2023; 28: 1121
  • 3 Shin SB, Lee JK, Ko MJ. Enhanced extraction of bioactive compounds from propolis (Apis mellifera L.) using subcritical water. Sci Rep 2023; 13: 15038
  • 4 Conte FL, Pereira AC, Brites G, Ferreira I, Silva AC, Sebastião AI, Matos P, Pereira C, Batista MT, Sforcin JM, Cruz MT. Exploring the antioxidant, anti-inflammatory and antiallergic potential of Brazilian propolis in monocytes. Phytomedicine Plus 2022; 2: 100231
  • 5 Zullkiflee N, Taha H, Usman A. Propolis: Its role and efficacy in human health and diseases. Molecules 2022; 27: 6120
  • 6 Yang J, Pi A, Yan L, Li J, Nan S, Zhang J, Hao Y. Research progress on therapeutic effect and mechanism of propolis on wound healing. Evid Based Complement Alternat Med 2022; 2022: 5798941
  • 7 Afsharpour F, Javadi M, Hashemipour S, Koushan Y, Haghighian HK. Propolis supplementation improves glycemic and antioxidant status in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled study. Complement Ther Med 2019; 43: 283-288
  • 8 Alassaf FA, Jasim MHM, Alfahad M, Qazzaz ME, Abed MN, Thanoon IA. Effects of bee propolis on FBG, HbA1c, and insulin resistance in healthy volunteers. Turk J Pharm Sci 2021; 18: 405-409
  • 9 Zakerkish M, Jenabi M, Zaeemzadeh N, Hemmati AA, Neisi N. The effect of Iranian propolis on glucose metabolism, lipid profile, insulin resistance, renal function and inflammatory biomarkers in patients with type 2 diabetes mellitus: A randomized double-blind clinical trial. Sci Rep 2019; 9: 7289
  • 10 Bahari H, Shahraki Jazinaki M, Goudarzi K, Namkhah Z, Taheri S, Golafrouz H, Pahlavani N. Effects of propolis consumption on blood pressure, lipid profile and glycemic parameters in adults: a GRADE-assessed systematic review and dose-response meta-analysis. Br J Nutr 2025; 133: 13-36
  • 11 Karimian J, Hadi A, Pourmasoumi M, Najafgholizadeh A, Ghavami A. The efficacy of propolis on markers of glycemic control in adults with type 2 diabetes mellitus: A systematic review and meta-analysis. Phytother Res 2019; 33: 1616-1626
  • 12 Samadi N, Mozaffari-Khosravi H, Rahmanian M, Askarishahi M. Effects of bee propolis supplementation on glycemic control, lipid profile and insulin resistance indices in patients with type 2 diabetes: A randomized, double-blind clinical trial. J Integr Med 2017; 15: 124-134
  • 13 Yousefi M, Hashemipour S, Shiri-Shahsavar MR, Koushan Y, Haghighian HK. Reducing the inflammatory interleukins with anti-inflammatory and antioxidant effects of propolis in patients with type 2 diabetes: Double-blind, randomized controlled, clinical trial. Clin Diabetol 2023; 12: 327-335
  • 14 Cunha GA, Carlstrom PF, Franchin M, Alencar SM, Ikegaki M, Rosalen PL. A systematic review of the potential effects of propolis extracts on experimentally-induced diabetes. Planta Med 2022; 89: 236-244
  • 15 Chen LH, Chien YW, Chang ML, Hou CC, Chan CH, Tang HW, Huang HY. Taiwanese green propolis ethanol extract delays the progression of type 2 diabetes mellitus in rats treated with streptozotocin/high-fat diet. Nutrients 2018; 10: 503
  • 16 Nna VU, Abu Bakar AB, Md Lazin MRML, Mohamed M. Antioxidant, anti-inflammatory and synergistic anti-hyperglycemic effects of Malaysian propolis and metformin in streptozotocin–induced diabetic rats. Food Chem Toxicol 2018; 120: 305-320
  • 17 Ridwan A, Sari A, Putra R. The potency of trigonaʼs propolis extract as reactive oxygen species inhibitor in diabetic mice. J Math Fundam Sci 2015; 47: 261-268
  • 18 Al-Hariri MT, Eldin TAG, Al-Harb MM. Protective effect and potential mechanisms of propolis on streptozotocin-induced diabetic rats. J Taibah Univ Med Sci 2016; 11: 7-12
  • 19 Babatunde IR, Abdulbasit A, Oladayo MI, Olasile OI, Olamide FR, Gbolahan BW. Hepatoprotective and pancreatoprotective properties of the ethanolic extract of Nigerian propolis. J Intercult Ethnopharmacol 2015; 4: 102-108
  • 20 RifaʼI M. Studies on the therapeutic effect of propolis in streptozotocin-induced diabetic mice. AIP Conf Proc 2017; 1844: 020001
  • 21 El Adaouia Taleb R, Djebli N, Chenini H, Sahin H, Kolayli S. In vivo and in vitro anti-diabetic activity of ethanolic propolis extract. J Food Biochem 2020; 44: e13267
  • 22 Usman UZ, Abu Bakar A, Zin A, Mohamed M. LC-MS analysis and effects of Malaysian propolis on insulin, glucagon, pancreas and oxidative stress status in streptozotocin-induced diabetic rats. JMBR 2017; 16: 15-27
  • 23 Omer HHS, Demirtas I, Karaca E, Yarım M, Ozen T. Investigating the hepatoprotective and antidiabetic properties of cryogenically pulverized Turkish propolis water extracts in streptozotocin-induced diabetic rats. S Afr J Bot 2024; 174: 927-936
  • 24 Chen Y, Wang J, Wang Y, Wang P, Zhou Z, Wu R, Xu Q, You H, Liu Y, Wang L, Zhou L, Wu Y, Hu L, Liu H, Liu Y. A propolis-derived small molecule ameliorates metabolic syndrome in obese mice by targeting the CREB/CRTC2 transcriptional complex. Nat Commun 2022; 13: 246
  • 25 Nie J, Chang Y, Li Y, Zhou Y, Qin J, Sun Z, Li H. Caffeic acid phenethyl ester (propolis extract) ameliorates insulin resistance by inhibiting JNK and NF-κB inflammatory pathways in diabetic mice and HepG2 cell models. J Agric Food Chem 2017; 65: 9041-9053
  • 26 Nakajima M, Arimatsu K, Minagawa T, Matsuda Y, Sato K, Takahashi N, Nakajima T, Yamazaki K. Brazilian propolis mitigates impaired glucose and lipid metabolism in experimental periodontitis in mice. BMC Complement Altern Med 2016; 16: 329
  • 27 Liu Y, Liang X, Zhang G, Kong L, Peng W, Zhang H. Galangin and pinocembrin from propolis ameliorate insulin resistance in HepG2 cells via regulating Akt/mTOR signaling. Evid Based Complement Alternat Med 2018; 2018: 7971842
  • 28 Noremylia MB, Hassan MZ, Ismail Z. Recent advancement in isolation, processing, characterization and applications of emerging nanocellulose: A review. Int J Biol Macromol 2022; 206: 954-976
  • 29 Israelsen WJ, Vander Heiden MG. Pyruvate kinase: Function, regulation and role in cancer. Semin Cell Dev Biol 2015; 43: 43-51
  • 30 Paz K, Hemi R, LeRoith D, Karasik A, Elhanany E, Kanety H, Zick Y. A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem 1997; 272: 29911-29918
  • 31 Lee J, Kim MS. The role of GSK3 in glucose homeostasis and the development of insulin resistance. Diabetes Res Clin Pract 2007; 77 Suppl 1: S49-57
  • 32 Okamura T, Hamaguchi M, Bamba R, Nakajima H, Yoshimura Y, Kimura T, Hashimoto Y, Majima S, Senmaru T, Ushigome E, Nakanishi N, Asano M, Yamazaki M, Nishimoto Y, Yamada T, Fujikura C, Asama T, Okumura N, Takakuwa H, Sasano R, Fukui M. Brazilian green propolis improves gut microbiota dysbiosis and protects against sarcopenic obesity. J Cachexia Sarcopenia Muscle 2022; 13: 3028-3047
  • 33 Zheng Y, Wu Y, Tao L, Chen X, Jones TJ, Wang K, Hu F. Chinese propolis prevents obesity and metabolism syndromes induced by a high fat diet and accompanied by an altered gut microbiota structure in mice. Nutrients 2020; 12: 959
  • 34 Yao H, Wang Y, Zhang X, Li P, Shang L, Chen X, Zeng J. Targeting peroxisomal fatty acid oxidation improves hepatic steatosis and insulin resistance in obese mice. J Biol Chem 2023; 299: 102845
  • 35 Watanabe A, de Almeida MO, Deguchi Y, Kozuka R, Arruda C, Berreta AA, Bastos JK, Woo JT, Yonezawa T. Effects of baccharin isolated from Brazilian green propolis on adipocyte differentiation and hyperglycemia in ob/ob diabetic mice. Int J Mol Sci 2021; 22: 6954
  • 36 Jin Y, Tan Y, Chen L, Liu Y, Ren Z. Reactive oxygen species induces lipid droplet accumulation in HepG2 cells by increasing perilipin 2 expression. Int J Mol Sci 2018; 19: 3445
  • 37 Vanella L, Tibullo D, Godos J, Pluchinotta FR, Di Giacomo C, Sorrenti V, Acquaviva R, Russo A, Li Volti G, Barbagallo I. Caffeic acid phenethyl ester regulates PPARʼs levels in stem cells-derived adipocytes. PPAR Res 2016; 2016: 7359521
  • 38 Eljaafari A, Robert M, Chehimi M, Chanon S, Durand C, Vial G, Bendridi N, Madec AM, Disse E, Laville M, Rieusset J, Lefai E, Vidal H, Pirola L. Adipose tissue-derived stem cells from obese subjects contribute to inflammation and reduced insulin response in adipocytes through differential regulation of the Th1/Th17 balance and monocyte activation. Diabetes 2015; 64: 2477-2488
  • 39 Friesen JA, Rodwell VW. The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases. Genome Biol 2004; 5: 248
  • 40 Ugbaja RN, Fatokun TP, Akinloye DI, James AS, Onabanjo OO, Akinloye OA. Propolis ethanol extract abrogates hyperglycemia, lipotoxicity, and lowered hepatic poly (ADP-ribose) polymerase protein level in male albino rats. J Diabetes Metab Disord 2021; 20: 683-696
  • 41 Chien YH, Yu YH, Chen YW. Taiwanese green propolis ameliorates metabolic syndrome via remodeling of white adipose tissue and modulation of gut microbiota in diet-induced obese mice. Biomed Pharmacother 2023; 160: 114386
  • 42 Vuda M, Kamath A. Drug induced mitochondrial dysfunction: Mechanisms and adverse clinical consequences. Mitochondrion 2016; 31: 63-74
  • 43 Burcelin R, Kande J, Ricquier D, Girard J. Changes in uncoupling protein and GLUT4 glucose transporter expressions in interscapular brown adipose tissue of diabetic rats: relative roles of hyperglycaemia and hypoinsulinaemia. Biochem J 1993; 291: 109-113
  • 44 Zhang Q, Ye H, Miao Q, Zhang Z, Wang Y, Zhu X, Zhang S, Zuo C, Zhang Z, Huang Z, Xue R, Zeng M, Huang H, Jin W, Tang Q, Guan Y, Li Y. Differences in the metabolic status of healthy adults with and without active brown adipose tissue. Wien Klin Wochenschr 2013; 125: 687-695
  • 45 Ueda M, Hayashibara K, Ashida H. Propolis extract promotes translocation of glucose transporter 4 and glucose uptake through both PI3K- and AMPK-dependent pathways in skeletal muscle. Biofactors 2013; 39: 457-466
  • 46 Lee ES, Uhm KO, Lee YM, Han M, Lee M, Park JM, Suh PG, Park SH, Kim HS. CAPE (caffeic acid phenethyl ester) stimulates glucose uptake through AMPK (AMP-activated protein kinase) activation in skeletal muscle cells. Biochem Biophys Res Commun 2007; 361: 854-858
  • 47 Pacheco A, Daleprane JB, Freitas VS, Ferderbar S, Hirabara S, Cuevas A, Saavedra N, Curi R, Abdalla DSP, Salazar LA. Effect of chilean propolis on glucose metabolism in diabetic mice. Int J Morphol 2011; 29: 754-761
  • 48 Shah SV, Baliga R, Rajapurkar M, Fonseca VA. Oxidants in chronic kidney disease. J Am Soc Nephrol 2007; 18: 16-28
  • 49 Mason RM, Wahab NA. Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol 2003; 14: 1358-1373
  • 50 Yamagishi S, Imaizumi T. Diabetic vascular complications: Pathophysiology, biochemical basis and potential therapeutic strategy. Curr Pharm Des 2005; 11: 2279-2299
  • 51 Sameni HR, Ramhormozi P, Bandegi AR, Taherian AA, Mirmohammadkhani M, Safari M. Effects of ethanol extract of propolis on histopathological changes and anti-oxidant defense of kidney in a rat model for type 1 diabetes mellitus. J Diabetes Investig 2016; 7: 506-513
  • 52 Guan R, Ma N, Liu G, Wu Q, Su S, Wang J, Geng Y. Ethanol extract of propolis regulates type 2 diabetes in mice via metabolism and gut microbiota. J Ethnopharmacol 2023; 310: 116385
  • 53 Hassan NE, El Shebini SM, El-Masry SA, Ahmed NH, Kamal AN, Ismail AS, Alian KM, Mostafa MI, Selim M, Afify MAS. Brief overview of dietary intake, some types of gut microbiota, metabolic markers and research opportunities in sample of Egyptian women. Sci Rep 2022; 12: 17291
  • 54 Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms 2020; 8: 1715
  • 55 Cai W, Xu J, Li G, Liu T, Guo X, Wang H, Luo L. Ethanol extract of propolis prevents high-fat diet-induced insulin resistance and obesity in association with modulation of gut microbiota in mice. Food Res Int 2020; 130: 108939
  • 56 Xue M, Liu Y, Xu H, Zhou Z, Ma Y, Sun T, Liu M, Zhang H, Liang H. Propolis modulates the gut microbiota and improves the intestinal mucosal barrier function in diabetic rats. Biomed Pharmacother 2019; 118: 109393
  • 57 Li J, Yang G, Zhang Q, Liu Z, Jiang X, Xin Y. Function of Akkermansia muciniphila in type 2 diabetes and related diseases. Front Microbiol 2023; 14: 1172400
  • 58 Bezirtzoglou E, Stavropoulou E, Kantartzi K, Tsigalou C, Voidarou C, Mitropoulou G, Prapa I, Santarmaki V, Kompoura V, Yanni AE, Antoniadou M, Varzakas T, Kourkoutas Y. Maintaining digestive health in diabetes: The role of the gut microbiome and the challenge of functional foods. Microorganisms 2021; 9: 516
  • 59 Du Y, Neng Q, Li Y, Kang Y, Guo L, Huang X, Chen M, Yang F, Hong J, Zhou S, Zhao J, Yu F, Su H, Kong X. Gastrointestinal autonomic neuropathy exacerbates gut microbiota dysbiosis in adult patients with type 2 diabetes mellitus. Front Cell Infect Microbiol 2021; 11: 804733
  • 60 La Reau AJ, Suen G. The Ruminococci: Key symbionts of the gut ecosystem. J Microbiol 2018; 56: 199-208
  • 61 Chen S, Zhang Y. Mechanism and application of Lactobacillus in type 2 diabetes-associated periodontitis. Front Public Health 2023; 11: 1248518
  • 62 Telagari M, Hullatti K. In-vitro alpha-amylase and alpha-glucosidase inhibitory activity of Adiantum caudatum Linn. and Celosia argentea Linn. extracts and fractions. Indian J Pharmacol 2015; 47: 425-429
  • 63 Zhang H, Wang G, Beta T, Dong J. Inhibitory properties of aqueous ethanol extracts of propolis on alpha-glucosidase. Evid Based Complement Alternat Med 2015; 2015: 587383
  • 64 Laaroussi H, Ferreira-Santos P, Genisheva Z, Bakour M, Ousaaid D, Teixeira JA, Lyoussi B. Unraveling the chemical composition, antioxidant, α-amylase and α-glucosidase inhibition of Moroccan propolis. Food Biosci 2021; 42: 101160
  • 65 Uddin S, Brooks PR, Tran TD. Chemical characterization, alpha-glucosidase, alpha-amylase and lipase inhibitory properties of the australian honey bee propolis. Foods 2022; 11: 1964
  • 66 Oren E, Tuncay S, Toprak YE, Firat M, Toptanci I, Karasakal OF, Isik M, Karahan M. Antioxidant, antidiabetic effects and polyphenolic contents of propolis from Siirt, Turkey. Food Sci Nutr 2024; 12: 2772-2782
  • 67 Karagecili H, Yilmaz MA, Erturk A, Kiziltas H, Guven L, Alwasel SH, Gulcin I. Comprehensive metabolite profiling of berdav propolis using LC-MS/MS: Determination of antioxidant, anticholinergic, antiglaucoma, and antidiabetic effects. Molecules 2023; 28: 1739
  • 68 Shahinozzaman M, Taira N, Ishii T, Halim MA, Hossain MA, Tawata S. Anti-inflammatory, anti-diabetic, and anti-alzheimerʼs effects of prenylated flavonoids from Okinawa propolis: An investigation by experimental and computational studies. Molecules 2018; 23: 2479
  • 69 Syaifie PH, Ibadillah D, Jauhar MM, Reninta R, Ningsih S, Ramadhan D, Arda AG, Ningrum DWC, Kaswati NMN, Rochman NT, Mardliyati E. Phytochemical profile, antioxidant, enzyme inhibition, acute toxicity, in silico molecular docking and dynamic analysis of apis mellifera propolis as antidiabetic supplement. Chem Biodivers 2024; 21: e202400433
  • 70 Pujirahayu N, Bhattacharjya DK, Suzuki T, Katayama T. alpha-glucosidase inhibitory activity of cycloartane-type triterpenes isolated from Indonesian stingless bee propolis and their structure-activity relationship. Pharmaceuticals (Basel) 2019; 12: 102
  • 71 Hernandez-Martinez JA, Zepeda-Bastida A, Morales-Rodriguez I, Fernandez-Luqueno F, Campos-Montiel R, Hereira-Pacheco SE, Medina-Perez G. Potential antidiabetic activity of apis mellifera propolis extraction obtained with ultrasound. Foods 2024; 13: 348
  • 72 İzol E, Turhan M. In-depth phytochemical profile by LC-MS/MS, mineral content by ICP-MS, and in-vitro antioxidant, antidiabetic, antiepilepsy, anticholinergic, and antiglaucoma properties of bitlis propolis. Life 2024; 14: 1389
  • 73 Amankwaah F, Addotey JN, Orman E, Adosraku R, Amponsah IK. A comparative study of Ghanaian propolis extracts: Chemometric analysis of the chromatographic profile, antioxidant, and hypoglycemic potential and identification of active constituents. Sci Afr 2023; 22: e01956
  • 74 Fallah M, Najafi F, Kavoosi G. Proximate analysis, nutritional quality and anti-amylase activity of bee propolis, bee bread and royal jelly. Int J Food Sci Technol 2022; 57: 2944-2953
  • 75 Farida S, Pratami DK, Sahlan M, Munʼim A, Djamil R, Winarti W, Ayub R, Alahmadi TA, Rahmawati SI, Putra MY, Bayu A, Iqbal M. In vitro study on antidiabetic and antihypertensive activities of ethanolic extract of propolis of Indonesian stingless bee Tetragonula sapiens. J King Saud Univ Sci 2023; 35: 102738
  • 76 Abd El Hady F, Souleman AMA, El-Hawary S, Salah N, Elshahid Z. GC/MS and HPLC analysis of alpha-glucosidase inhibitor′s sub-fractions from Egyptian propolis. Int. J Pharm Sci Rev Res 2016; 38: 120-129
  • 77 Sorrenti V, Raffaele M, Vanella L, Acquaviva R, Salerno L, Pittalà V, Intagliata S, Di Giacomo C. Protective effects of Caffeic Acid Phenethyl Ester (CAPE) and novel cape analogue as inducers of heme oxygenase-1 in streptozotocin-induced type 1 diabetic rats. Int J Mol Sci 2019; 20: 2441
  • 78 Khan M, Singh I, Won J. Asymmetric dimethylarginine-induced oxidative damage leads to cerebrovascular dysfunction. Neural Regen Res 2021; 16: 1793-1794
  • 79 Cinelli MA, Do HT, Miley GP, Silverman RB. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med Res Rev 2020; 40: 158-189
  • 80 McCulloch LJ, Bramwell LR, Knight B, Kos K. Circulating and tissue specific transcription of angiopoietin-like protein 4 in human Type 2 diabetes. Metabolism 2020; 106: 154192
  • 81 Kitamura H, Saito N, Fujimoto J, Nakashima KI, Fujikura D. Brazilian propolis ethanol extract and its component kaempferol induce myeloid-derived suppressor cells from macrophages of mice in vivo and in vitro. BMC Complement Altern Med 2018; 18: 138
  • 82 Xia C, Rao X, Zhong J. Role of T lymphocytes in type 2 diabetes and diabetes-associated inflammation. J Diabetes Res 2017; 2017: 6494795
  • 83 Ningsih FN, Rifaʼi M. Propolis action in controlling activated T cell producing TNF-a and IFN-g in diabetic mice. Turk J Immunol 2017; 5: 36-44
  • 84 Rifaʼi M, Widodo N. Significance of propolis administration for homeostasis of CD4+CD25+ immunoregulatory T cells controlling hyperglycemia. Springerplus 2014; 3: 526