RSS-Feed abonnieren
DOI: 10.1055/a-2589-5696
Ovarian Cancer Screening: Recommendations and Future Prospects
Ovarialkarzinom-Screening: Empfehlungen und Zukunftsperspektiven
Abstract
Background
Ovarian cancer remains a significant cause of mortality among women, largely due to challenges in early detection. Current screening strategies, including transvaginal ultrasound and CA125 testing, have limited sensitivity and specificity, particularly in asymptomatic women or those with early-stage disease. The European Society of Gynaecological Oncology, the European Society for Medical Oncology, the European Society of Pathology, and other health organizations currently do not recommend routine population-based screening for ovarian cancer due to the high rates of false-positives and the absence of a reliable early detection method.
Method
This review examines existing ovarian cancer screening guidelines and explores recent advances in diagnostic technologies including radiomics, artificial intelligence, point-of-care testing, and novel detection methods.
Results and Conclusion
Emerging technologies show promise with respect to improving ovarian cancer detection by enhancing sensitivity and specificity compared to traditional methods. Artificial intelligence and radiomics have potential for revolutionizing ovarian cancer screening by identifying subtle diagnostic patterns, while liquid biopsy-based approaches and cell-free DNA profiling enable tumor-specific biomarker detection. Minimally invasive methods, such as intrauterine lavage and salivary diagnostics, provide avenues for population-wide applicability. However, large-scale validation is required to establish these techniques as effective and reliable screening options.
Key Points
-
Current ovarian cancer screening methods lack sensitivity and specificity for early-stage detection.
-
Emerging technologies like artificial intelligence, radiomics, and liquid biopsy offer improved diagnostic accuracy.
-
Large-scale clinical validation is required, particularly for baseline-risk populations.
Citation Format
-
Chiu S, Staley H, Jeevananthan P et al. Ovarian Cancer Screening: Recommendations and Future Prospects. Rofo 2025; DOI 10.1055/a-2589-5696
Zusammenfassung
Hintergrund
Ovarialkarzinome sind nach wie vor eine der häufigsten Todesursachen bei Frauen, was vor allem auf die Schwierigkeiten bei der Früherkennung zurückzuführen ist. Aktuelle Screening-Strategien, darunter die transvaginale Sonografie und die CA125-Bestimmung, haben eine geringe Sensitivität und Spezifität insbesondere bei asymptomatischen Frauen oder bei einer im Frühstadium befindlichen Erkrankung. Die „European Society of Gynaecological Oncology“, die „European Society for Medical Oncology“, die „European Society of Pathology“ und andere medizinische Fachgesellschaften sprechen aktuell keine Empfehlung für ein Ovarialkarzinom-Routinescreening in der Bevölkerung aus, da die Rate falsch-positiver Ergebnisse hoch ist und eine zuverlässige Früherkennungsmethode fehlt.
Methoden
In dieser Übersicht werden die aktuellen Leitlinien für das Ovarialkarzinom-Screening vorgestellt und die jüngsten Fortschritte bei diagnostischen Technologien wie Radiomics, künstliche Intelligenz, Point-of-Care-Tests und neuartige Nachweismethoden analysiert.
Ergebnisse und Schlussfolgerung
Die neuen Technologien sind vielversprechend, da sie verglichen mit herkömmlichen Methoden höhere Sensitivität und Spezifität aufweisen und somit die Diagnose von Ovarialkarzinomen verbessern. Künstliche Intelligenz und Radiomics können die Früherkennung von Ovarialkarzinomen durch die Identifizierung subtiler diagnostischer Muster revolutionieren, während auf Liquid-Biopsy basierende Ansätze und Profiling zellfreier DNA den Nachweis tumorspezifischer Biomarker ermöglichen. Minimalinvasive Methoden wie intrauterine Lavage und die Speicheldiagnostik bieten die Möglichkeit für eine breite Anwendbarkeit. Es ist jedoch eine umfangreiche Validierung erforderlich, um diese Techniken als wirksame und zuverlässige Screening-Optionen zu etablieren.
Kernaussagen
-
Die aktuellen Methoden zur Früherkennung von Ovarialkarzinomen sind nicht zuverlässig.
-
Neue Technologien wie künstliche Intelligenz, Radiomics und Liquid-Biopsy bieten eine verbesserte diagnostische Genauigkeit.
-
Eine groß angelegte klinische Validierung ist erforderlich, insbesondere für Populationen mit erhöhtem Risiko.
Keywords
Ovarian cancer - Biomarkers - Early detection - Artificial intelligence - Radiomics - screeningPublikationsverlauf
Eingereicht: 02. Januar 2025
Angenommen nach Revision: 07. April 2025
Artikel online veröffentlicht:
23. Mai 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 WCRF. Ovarian cancer statistics. Zugriff am 02. September 2024 unter: https://www.wcrf.org/cancer-trends/ovarian-cancer-statistics/
- 2 CRUK. Ovarian cancer survival. Zugriff am 21. Juni 2024 unter: https://www.cancerresearchuk.org/about-cancer/ovarian-cancer/survival#:~:text=Survival%20for%20all%20stages%20of%20ovarian%20cancer&text=almost%2045%20out%20of%20100,for%2010%20years%20or%20more
- 3 Sundar S, Neal RD, Kehoe S. Diagnosis of ovarian cancer. Bmj 2015; 351: h4443
- 4 NICE. Ovarian cancer: recognition and initial management. Zugriff am 03. September 2024 unter: https://www.nice.org.uk/guidance/cg122/
- 5 Menon U, Gentry-Maharaj A, Burnell M. et al. Ovarian cancer population screening and mortality after long-term follow-up in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial. The Lancet 2021; 397: 2182-2193
- 6 Menon U, Gentry-Maharaj A, Burnell M. et al. Tumour stage, treatment, and survival of women with high-grade serous tubo-ovarian cancer in UKCTOCS: an exploratory analysis of a randomised controlled trial. Lancet Oncol 2023; 24: 1018-1028
- 7 Gohagan JK, Prorok PC, Hayes RB. et al. The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial of the National Cancer Institute: history, organization, and status. Control Clin Trials 2000; 21: 251s-272s
- 8 Buys SS, Partridge E, Black A. et al. Effect of Screening on Ovarian Cancer Mortality: The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial. JAMA 2011; 305: 2295-2303
- 9 González-Martín A, Harter P, Leary A. et al. Newly diagnosed and relapsed epithelial ovarian cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Annals of Oncology 2023; 34: 833-848
- 10 Burke W, Barkley J, Barrows E. et al. Executive Summary of the Ovarian Cancer Evidence Review Conference. Obstet Gynecol 2023; 142: 179-195
- 11 Grossman DC, Curry SJ, Owens DK. et al. Screening for Ovarian Cancer: US Preventive Services Task Force Recommendation Statement. Jama 2018; 319: 588-594
- 12 Ledermann JA, Matias-Guiu X, Amant F. et al. ESGO–ESMO–ESP consensus conference recommendations on ovarian cancer: pathology and molecular biology and early, advanced and recurrent disease. Annals of Oncology 2024; 35: 248-266
- 13 Sundar S, Agarwal R, Davenport C. et al. Risk-prediction models in postmenopausal patients with symptoms of suspected ovarian cancer in the UK (ROCkeTS): a multicentre, prospective diagnostic accuracy study. The Lancet Oncology 2024; 25: 1371-1386
- 14 Imyanitov EN, Kuligina ES, Sokolenko AP. et al. Hereditary cancer syndromes. World J Clin Oncol 2023; 14: 40-68
- 15 Suszynska M, Ratajska M, Kozlowski P. BRIP1, RAD51C, and RAD51D mutations are associated with high susceptibility to ovarian cancer: mutation prevalence and precise risk estimates based on a pooled analysis of ~30,000 cases. Journal of Ovarian Research 2020; 13
- 16 NCCN. National Comprehensive Cancer Network: NCCN Clinical Practice Guidelines in Oncology: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic. Online: last access date: 10th December 2024.
- 17 Rosenthal AN, Fraser LSM, Philpott S. et al. Evidence of Stage Shift in Women Diagnosed With Ovarian Cancer During Phase II of the United Kingdom Familial Ovarian Cancer Screening Study. J Clin Oncol 2017; 35: 1411-1420
- 18 Sroczynski G, Gogollari A, Kuehne F. et al. A Systematic Review on Cost-effectiveness Studies Evaluating Ovarian Cancer Early Detection and Prevention Strategies. Cancer Prev Res (Phila) 2020; 13: 429-442
- 19 Jia X, Pang Y, Liu LS. Online Health Information Seeking Behavior: A Systematic Review. Healthcare (Basel) 2021; 9
- 20 Barcroft JF, Yom-Tov E, Lampos V. et al. Using online search activity for earlier detection of gynaecological malignancy. BMC Public Health 2024; 24
- 21 Brewer HR, Hirst Y, Sundar S. et al. Cancer Loyalty Card Study (CLOCS): protocol for an observational case–control study focusing on the patient interval in ovarian cancer diagnosis. BMJ Open 2020; 10: e037459
- 22 Brewer HR, Hirst Y, Chadeau-Hyam M. et al. Association Between Purchase of Over-the-Counter Medications and Ovarian Cancer Diagnosis in the Cancer Loyalty Card Study (CLOCS): Observational Case-Control Study. JMIR Public Health Surveill 2023; 9: e41762
- 23 Dolan EH, Goulding J, Tata LJ. et al. Using Shopping Data to Improve the Diagnosis of Ovarian Cancer: Computational Analysis of a Web-Based Survey. JMIR Cancer 2023; 9: e37141
- 24 Ayyoubzadeh SM, Ahmadi M, Yazdipour AB. et al. Prediction of ovarian cancer using artificial intelligence tools. Health Sci Rep 2024; 7: e2203
- 25 van Timmeren JE, Cester D, Tanadini-Lang S. et al. Radiomics in medical imaging—“how-to” guide and critical reflection. Insights into Imaging 2020; 11: 91
- 26 Barcroft JF, Linton-Reid K, Landolfo C. et al. Machine learning and radiomics for segmentation and classification of adnexal masses on ultrasound. npj Precision Oncology 2024; 8: 41
- 27 Chiappa V, Interlenghi M, Bogani G. et al. A decision support system based on radiomics and machine learning to predict the risk of malignancy of ovarian masses from transvaginal ultrasonography and serum CA-125. European Radiology Experimental 2021; 5
- 28 Raamanathan A, Simmons GW, Christodoulides N. et al. Programmable Bio-Nano-Chip Systems for Serum CA125 Quantification: Toward Ovarian Cancer Diagnostics at the Point-of-Care. Cancer Prevention Research 2012; 5: 706-716
- 29 Bilgi Kamaç M, Altun M, Yılmaz M. et al. Point-of-care testing: a disposable label-free electrochemical CA125 and HE4 immunosensors for early detection of ovarian cancer. Biomed Microdevices 2023; 25: 18
- 30 Barr CE, Njoku K, Owens GL. et al. Urine CA125 and HE4 for the Detection of Ovarian Cancer in Symptomatic Women. Cancers (Basel) 2023; 15
- 31 Wang S, Zhao X, Khimji I. et al. Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care. Lab on a Chip 2011; 11: 3411
- 32 Research YC. PROTECT-C. Zugriff am 11. November 2024 unter: https://www.yorkshirecancerresearch.org.uk/research-story/protect-c
- 33 Scebba F, Salvadori S, Cateni S. et al. Top-Down Proteomics of Human Saliva, Analyzed with Logistic Regression and Machine Learning Methods, Reveal Molecular Signatures of Ovarian Cancer. Int J Mol Sci 2023; 24
- 34 Sia TY, Yaari Z, Feiner R. et al. Uterine washings as a novel method for early detection of ovarian cancer: Trials and tribulations. Gynecologic Oncology Reports 2024; 51: 101330
- 35 Rocconi RP, Wilhite AM, Schambeau L. et al. A novel proteomic-based screening method for ovarian cancer using cervicovaginal fluids: A window into the abdomen. Gynecologic Oncology 2022; 164: 181-186
- 36 Zhou H, Zhang X, Liu Q. et al. Can circulating cell free DNA be a promising marker in ovarian cancer? – a genome-scale profiling study in a single institution. J Ovarian Res 2023; 16: 11
- 37 Buckley DN, Lewinger JP, Gooden G. et al. OvaPrint—A Cell-free DNA Methylation Liquid Biopsy for the Risk Assessment of High-grade Serous Ovarian Cancer. Clinical Cancer Research 2023; 29: 5196-5206
- 38 Winn-Deen ES, Bortolin LT, Gusenleitner D. et al. Improving Specificity for Ovarian Cancer Screening Using a Novel Extracellular Vesicle–Based Blood Test. The Journal of Molecular Diagnostics 2024;
- 39 Manning B, Banerjee S, Bortolin LT. et al. Evaluation of a novel extracellular vesicle (EV) based ovarian cancer (OC) screening test in asymptomatic postmenopausal women. Journal of Clinical Oncology 2024; 42: 5553-5553
- 40 Timmerman D, Ameye L, Fischerova D. et al. Simple ultrasound rules to distinguish between benign and malignant adnexal masses before surgery: prospective validation by IOTA group. Bmj 2010; 341: c6839
- 41 Levine D, Patel MD, Suh-Burgmann EJ. et al. Simple Adnexal Cysts: SRU Consensus Conference Update on Follow-up and Reporting. Radiology 2019; 293: 359-371
- 42 Strachowski LM, Jha P, Phillips CH. et al. O-RADS US v2022: An Update from the American College of Radiology’s Ovarian-Adnexal Reporting and Data System US Committee. Radiology 2023; 308: e230685
- 43 Thomassin-Naggara I, Poncelet E, Jalaguier-Coudray A. et al. Ovarian-Adnexal Reporting Data System Magnetic Resonance Imaging (O-RADS MRI) Score for Risk Stratification of Sonographically Indeterminate Adnexal Masses. JAMA Network Open 2020; 3: e1919896-e1919896