CC BY 4.0 · Sustainability & Circularity NOW 2025; 02: a25717048
DOI: 10.1055/a-2571-7048
Original Article

N- and O-Trideuteromethylation of Drugs and Intermediates with Trimethyloxosulphonium Iodide-d 9 Enabled by a Mechanochemical Synthesis

Pranal M. Dharmik
1   Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East), Mumbai, India.
,
Sandip J. Detke
1   Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East), Mumbai, India.
,
Omkar C. Harasure
1   Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East), Mumbai, India.
,
1   Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East), Mumbai, India.
› Institutsangaben

Gefördert durch: Department of Science and Technology, Ministry of Science and Technology, India
Gefördert durch: All India Council for Technical Education
Funding Information PMD received a post-graduate fellowship from the All India Council for Technical Education (AICTE), New Delhi, India. SJD received a fellowship from the Department of Science and Technology (DST), Government of India. OCH received a post-graduate fellowship from the University Grants Commission (UGC), New Delhi, India.


Abstract

Solvent-free, sustainable organic synthetic approaches based on the use of microwaves, ultrasound, or mechanochemistry are needed from a green chemistry perspective. Mechanochemical synthesis involves the coupling of mechanical and chemical processes at the molecular level. In the present study, we have applied mechanochemistry for the deuteration of drugs and intermediates, particularly N- and O-trideuteromethylation. Conventionally, MeI-d 3, a carcinogenic and relatively expensive reagent, is used for introducing a trideuteromethyl (–OCD3) group in drugs/intermediates. Here, the utility of trimethyloxosulphonium iodide-d 9 (TDMSOI) was investigated as the –OCD3 source, for developing and optimizing a novel, one-pot, solvent-free, mechanochemical method for N- and O-trideuteromethylation of several drugs/intermediates with appreciable degree of deuteration (~90% D), particularly those containing phenol, acid, and amine functional groups. The investigated method is scalable and is of potential interest to the Medicinal Chemistry and Drug Discovery community, given the perceived importance of deuteration as a viable strategy for affecting the in vivo half-life of drugs.

Supplementary Material



Publikationsverlauf

Eingereicht: 29. Oktober 2024

Angenommen nach Revision: 31. März 2025

Accepted Manuscript online:
01. April 2025

Artikel online veröffentlicht:
21. Mai 2025

© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

Bibliographical Record
Pranal M. Dharmik, Sandip J. Detke, Omkar C. Harasure, Prashant S. Kharkar. N- and O-Trideuteromethylation of Drugs and Intermediates with Trimethyloxosulphonium Iodide-d 9 Enabled by a Mechanochemical Synthesis. Sustainability & Circularity NOW 2025; 02: a25717048.
DOI: 10.1055/a-2571-7048
 
  • References

  • 1 Mateti S, Mathesh M, Liu Z, Tao T, Ramireddy T, Glushenkov AM, Yang W, Chen YI. Mechanochemistry: A Force in Disguise and Conditional Effects towards Chemical Reactions. ChemComm 2020; 57: 1080-1092
  • 2 Suslick KS. Mechanochemistry and Sonochemistry: Concluding Remarks. Faraday Discuss. 2014; 170: 411-422
  • 3 Takacs L. The Historical Development of Mechanochemistry. Chem. Soc. Rev. 2013; 42: 7649-7659
  • 4 O’Neill RT, Boulatov R. The Many Flavours of Mechanochemistry and its Plausible Conceptual Underpinnings. Nat. Rev. Chem. 2021; 5: 148-167
  • 5 Liu X, Li Y, Zeng L, Li X, Chen N, Bai S, He H, Wang Q, Zhang C. A Review on Mechanochemistry: Approaching Advanced Energy Materials with Greener Force. Adv. Mater. 2022; 34: e2108327
  • 6 Halder A, Krusenbaum A, Grätz S, Tigineh GT, Borchardt L, Kim JG. The mechanochemical synthesis of polymers. Chem. Soc. Rev. 2022; 51 (07) 2873-2905
  • 7 Michalchuk AA. L, Boldyreva EV, Belenguer AM, Emmerling F, Boldyrev VV. Tribochemistry, Mechanical Alloying, Mechanochemistry: What is in a Name?. Front. Chem. 2021; 9: 685789
  • 8 Friščić T, Mottillo C, Titi HM. Mechanochemistry for Synthesis. Angew. Chem., Int. Ed. Engl. 2020; 59 (03) 1018-1029
  • 9 Maiti D, De Sarkar S. Mechanochemical Synthesis of Functionalized Quinolines by Iodine Mediated Oxidative Annulation. Chem. – Asian J. 2020; 15 (05) 577-580
  • 10 Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- and tritium-labelled compounds: Applications in the Life Sciences. Angew. Chem., Int. Ed. 2018; 57 (07) 1758-1784
  • 11 Gómez-Gallego M, Sierra MA. Kinetic Isotope Effects in the Study of Organometallic Reaction Mechanisms. Chem. Rev. 2011; 111 (08) 4857-4963
  • 12 Deuterated MA. Drugs Draw Heavier Backing. Nat. Rev. Drug Discovery 2016; 15 (04) 219-221
    • 13a Cleland WW. The Use of Isotope Effects to Determine Enzyme Mechanisms. Arch. Biochem. Biophys. 2005; 433 (01) 2-12
    • 13b Timmins GS. Deuterated Drugs: Where are We Now?. Expert Opin. Ther. Pat. 2014; 24 (10) 1067-1075
  • 14 Gant TG. Using Deuterium in Drug Discovery: Leaving the Label in the Drug. J. Med. Chem. 2014; 57 (09) 3595-3611
    • 15a Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Recent Developments for The Deuterium and Tritium Labeling of Organic Molecules. Chem. Rev. 2022; 122 (06) 6634-6718
    • 15b Sun Q, Soulé JF. Broadening of Horizons in the Synthesis of CD3-Labeled Molecules. Chem. Soc. Rev. 2021; 50 (19) 10806-10835
  • 16 Barreiro EJ, Kümmerle AE, Fraga CA. The Methylation Effect in Medicinal Chemistry. Chem. Rev. 2011; 111 (09) 5215-5246
  • 17 Schönherr H, Cernak T. Profound Methyl Effects in Drug Discovery and A Call for New C-H Methylation Reactions. Angew. Chem., Int. Ed. Engl. 2013; 52 (47) 12256-12267
  • 18 Kuntz KW, Campbell JE, Keilhack H, Pollock RM, Knutson SK, Porter-Scott M, Richon VM, Sneeringer CJ, Wigle TJ, Allain CJ, Majer CR, Moyer MP, Copeland RA, Chesworth R. The Importance of Being Me: Magic Methyls, Methyltransferase Inhibitors, and the Discovery of Tazemetostat. J. Med. Chem. 2016; 59 (04) 1556-1564
  • 19 Tung R. Deuterated Benzo[d][1,3]-dioxol Derivatives. United States Pat. US7678914B2 2010 (Concert Pharmaceuticals Inc.)
  • 20 Hoffman JM, Habecker CN, Pietruszkiewicz AM, Bolhofer WA, Cragoe Jr. EJ, Torchiana ML, Hirschmann R. A Deuterium Isotope Effect on the Inhibition of Gastric Secretion by N,N-dimethyl-N′-[2-(diisopropylamino)ethyl]-N′-(4,6-dimethyl-2-pyridyl)urea. Synthesis of Metabolites. J. Med. Chem. 1983; 26 (11) 1650-1653
  • 21 Mullard A. First De Novo Deuterated Drug Poised for Approval. Nat. Rev. Drug Discovery 2022; 21 (09) 623-625
  • 22 Gupta H, Perkins W, Stark C, Kikkeri S, Kakazu J, Kaye A, Kaye A. Deutetrabenazine for the Treatment of Chorea Associated with Huntington's Disease. Health Psychol. Res. 2022; 10 (03) 36040
  • 23 DeWitt SH, Maryanoff BE. Deuterated Drug Molecules: Focus on FDA-approved Deutetrabenazine. Published as part of the Biochemistry series “Biochemistry to Bedside”. Biochemistry 2018; 57 (05) 472-473
  • 24 Zha Z, Ploessl K, Choi SR, Alexoff D, Kung HF. Preclinical evaluation of [18F]D3FSP, Deuterated AV-45, for Imaging of β-amyloid in the Brain. Nucl. Med. Biol. 2021; 92: 97-106
  • 25 Ma H, Xu W, Ni J, Zhao N, Tang S, Li S. et al. Phase I Clinical Trial of HC-1119 Soft Capsule in Chinese Healthy Adult Male Subjects: Pharmacokinetics and Safety of Single-Dose Proportionality and Effects of Food. Prostate 2022; 82 (02) 276-285
  • 26 Parente RM, Tarantino PM, Sippy BC, Burdock GA. Pharmacokinetic, Pharmacological, and Genotoxic Evaluation of Deuterated Caffeine. Food Chem. Toxicol. 2022; 160: 112774
  • 27 Deuterium Medicinal Chemistry: A New Approach to Drug Discovery and Development https://www.jstage.jst.go.jp/article/medchem/24/2/24_8/_pdf (accessed on February 17, 2025)
  • 28 Deuterated Drugs: An Obvious Idea? https://www.science.org/content/blog-post/deute-rated-drugs-obvious-idea (accessed on February 17, 2025)
  • 29 Harbeson SL, Tung RD. Deuterium in Drug Discovery and Development. Ann. Rep. Med. Chem. 2011; 47: 403-417
  • 30 Lv Z, Chu Y, Wang Y. HIV Protease Inhibitors: A Review of Molecular Selectivity and Toxicity. HIV AIDS 2015; 7: 95-104
  • 31 Khoury R, Marx C, Mirgati S, Velury D, Chakkamparambil B, Grossberg GT. AVP-786 as a Promising Treatment Option for Alzheimer's Disease including Agitation. Expert Opin. Pharmacother. 2021; 22 (07) 783-795
  • 32 Shen Z, Zhang S, Geng H, Wang J, Zhang X, Zhou A. et al. Trideuteromethylation Enabled by a Sulfoxonium Metathesis Reaction. Org. Lett. 2019; 21 (02) 448-452
  • 33 Higashi T, Kusumoto S, Nozaki K. Heterolytic Oxidative Addition of sp2 and sp3 C-H Bonds by Metal–Ligand Cooperation with an Electron-Deficient Cyclopentadienone Iridium Complex. J. Am. Chem. Soc. 2021; 143 (33) 12999-13004
  • 34 Pony YR, Hesk D, Rivera N, Pelczer I, Chirik PJ. Iron-catalysed Tritiation of Pharmaceuticals. Nature 2016; 529 (7585) 195-199
  • 35 Yang H, Dormer PG, Rivera NR, Hoover AJ. Palladium(II)-Mediated C−H Tritiation of Complex Pharmaceuticals. Angew. Chem., Int. Ed. 2018; 57 (07) 1883-1887
  • 36 Yu Y, Zhang B. Photocatalytic Deuteration of Halides using D2O Over CdSe Porous Nanosheets: A Mild and Controllable Route to Deuterated Molecules. Angew. Chem., Int. Ed. 2018; 57 (20) 5590-5592
  • 37 Loh YY, Nagao K, Hoover AJ, Hesk D, Rivera NR, Colletti SL, Davies IW, MacMillan DW. C. Photoredox-catalyzed Deuteration and Tritiation of Pharmaceutical Compounds. Science 2017; 358 (6367) 1182-1187
  • 38 Koniarczyk JL, Hesk D, Overgard A, Davies IW, McNally A. A General Strategy for Site-Selective Incorporation of Deuterium and Tritium into Pyridines, Diazines, and Pharmaceuticals. J. Am. Chem. Soc. 2018; 140 (06) 1990-1993
  • 39 Hale LV. A, Szymczak NK. Stereoretentive Deuteration of α-Chiral Amines with D2O. J. Am. Chem. Soc. 2016; 138 (41) 13489-13492
  • 40 Wang X, Zhu M.-H, Schuman DP, Zhong D, Wang W.-Y, Wu L.-Y. et al. General and Practical Potassium Methoxide/disilane-mediated Dehaloge-native Deuteration of (hetero)arylhalides. J. Am. Chem. Soc. 2018; 140 (35) 10970-10974
  • 41 Soulard V, Villa G, Vollmar DP, Renaud P. Radical Deuteration with D2O: Catalysis and Mechanistic Insights. J. Am. Chem. Soc. 2018; 140 (01) 155-158
  • 42 Kuriyama M, Kujirada S, Tsukuda K, Onomura O. Nickel-catalyzed Deoxygenative Deuteration of Aryl Sulfamates. Adv. Synth. Catal. 2017; 359 (06) 1043-1048
  • 43 Valero M, Weck R, Güssregen S, Atzrodt J, Derdau V. Highly Selective Directed Iridium- Catalyzed Hydrogen Isotope Exchange Reactions of Aliphatic Amides. Angew. Chem., Int. Ed. 2018; 57 (27) 8159-8163
  • 44 Gao L, Perato S, Garcia-Argote S, Taglang C, Martínez-Prieto LM, Chollet C. et al. Ruthenium-catalyzed Hydrogen Isotope Exchange of C(sp3)–H Bonds Directed by a Sulfur Atom. Chem. Commun. 2018; 54 (24) 2986-2989
  • 45 Kar S, Goeppert A, Sen R, Kothandaraman J, Surya Prakash GK. Regioselective Deuteration of Alcohols in D2O Catalysed by Homogeneous Manganese and Iron Pincer Complexes. Green Chem. 2018; 20 (12) 2706-2710
  • 46 Yin D.-W, Liu G. Palladium-catalyzed Regioselective C–H Functionalization of Arenes Substituted by Two N-heterocycles and Application in Late-stage Functionalization. J. Org. Chem. 2018; 83 (07) 3987-4001
  • 47 Zhao D, Luo H, Chen B, Chen W, Zhang G, Yu Y. Palladium-catalyzed H/D Exchange Reaction with 8-Aminoquinoline as The Directing Group: Access to Ortho-Selective Deuterated Aromatic Acids and Β-Selective Deuterated Aliphatic Acids. J. Org. Chem. 2018; 83 (15) 7860-7866
  • 48 Ding Y, Luo S, Adijiang A, Zhao H, An J. Reductive Deuteration of Nitriles: The Synthesis of α,α-Dideuterio Amines by Sodium-mediated Electron Transfer Reactions. J. Org. Chem. 2018; 83 (19) 12269-12274
  • 49 Liu C, Chen Z, Su C, Zhao X, Gao Q, Ning G.-H. et al. Controllable Deuteration of Halogenated Compounds by Photocatalytic D2O Splitting. Nat. Commun. 2018; 9 (01) 80
  • 50 Li X, Wu S, Chen S, Lai Z, Luo H.-B, Sheng C. One-pot Synthesis of Deuterated Aldehydes from Arylmethyl Halides. Org. Lett. 2018; 20 (07) 1712-1715
  • 51 Zhang M, Yuan X.-A, Zhu C, Xie J. Deoxygenative Deuteration of Carboxylic Acids with D2O. Angew. Chem., Int. Ed. 2019; 58 (01) 312-316
  • 52 Gowrisankar S, Neumann H, Beller M. A Convenient and Practical Synthesis of Anisoles and Deuterated Anisoles by Palladium-Catalyzed Coupling Reactions of Aryl Bromides and Chlorides. Chem. – Eur. J. 2012; 18 (09) 2498-2502
  • 53 Dash P, Janni M, Peruncheralathan S. Trideuteriomethoxylation of Aryl and Heteroaryl Halides. Eur. J. Org. Chem. 2012; 26: 4914-4917
  • 54 Vanderheiden S, Bulat B, Zevaco T, Jung N, Bräse S. Solid Phase Synthesis of Selectively Deuterated Arenes. Chem. Commun. 2011; 47 (32) 9063-9065
  • 55 Caporaso R, Manna S, Zinken S, Kochnev AR, Lukyanenko ER, Kurkin AV. et al. Radical Trideuteromethylation with Deuterated Dimethyl Sulfoxide in the Synthesis of Heterocycles and Labelled Building Blocks. Chem. Commun. 2016; 52 (84) 12486-12489
    • 56a Dolphin D. and Economical Preparation of L-Methionine-Methyl-d33 . Anal. Biochem. 1970; 342: 338-342
    • 56b Yu ZW, Quinn PJ. Dimethyl Sulphoxide: A Review of its Applications in Cell Biology. Biosci. Rep. 1994; 14 (06) 259-281
  • 57 Cotton FA, Fassnacht JH, Horroks Jr. WD, Nelson NA. Rapid, Simple, and Inexpensive Preparation of [2H3] Methyl Iodide and [2H6] Dimethyl Sulphoxide. J. Chem. Soc. 1959; 4138-4139
    • 58a Zhang Y, Liu W, Xu Y, Liu Y, Peng J, Wang M, Bai Y, Lu H, Shi Z, Shao X. S-(Methyl-d3) Arylsulfonothioates: A Family of Robust, Shelf-Stable, And Easily Scalable Reagents for Direct Trideuteromethylthiolation. Org. Lett. 2022; 24 (37) 6794-6799
    • 58b Huang CM, Li J, Ai JJ, Liu XY, Rao W, Wang SY. Visible-Light-Promoted Cross-Coupling Reactions of Aryldiazonium Salts with S-methyl-d3Sulfonothioate or Se-methyl-d3 Selenium Sulfonate: Synthesis of Trideuteromethylated Sulfides, Sulfoxides, and Selenides. Org. Lett. 2020; 22 (22) 9128-9132
    • 58c Zhu MH, Yu CL, Feng YL, Usman M, Zhong D, Wang X, Nesnas N, Liu WB. Detosylative (Deutero)alkylation of Indoles and Phenols with (Deutero)alkoxides. Org. Lett. 2019; 21 (17) 7073-7077
    • 58d Wang M, Zhao Y, Zhao Y, Shi Z. Bioinspired Design of a Robust d3-Methylating Agent. Sci. Adv. 2020; 6 (19) eaba0946
    • 58e Wu MC, Li MZ, Chen YX, Liu F, Xiao JA, Chen K, Xiang HY, Yang H. Photoredox-Catalyzed C-H Trideuteromethylation of Quinoxalin-2(1H)-ones with CDCl3 as the “CD3” Source. Org. Lett. 2022; 24 (35) 6412-6416
    • 58f Xiao X, Huang YQ, Tian HY, Bai J, Cheng F, Wang X, Ke ML, Chen FE. Robust, Scalable Construction of an Electrophilic Deuterated Methylthiolating Reagent: Facile Access to SCD3-containing Scaffolds. Chem. Commun. 2022; 58 (18) 3015-3018
    • 58g Goyal V, Sarki N, Narani A, Naik G, Natte K, Jagadeesh RV. Recent Advances in the Catalytic N-Methylation and N-Trideuteromethylation Reactions using Methanol and Deuterated Methanol. Coord. Chem. Rev. 2023; 474: 214827
  • 59 Forrester J, Jones RV. H, Prestonb PN, Simpson ES. C. Generation of Trimethylsulfonium Cation from Dimethyl Sulfoxide and Dimethyl Sulfate: Implications for The Synthesis of Epoxides from Aldehydes and Ketones. J. Chem. Soc., Perkin Trans. 1995; 1 (18) 2289-2291