Subscribe to RSS

DOI: 10.1055/a-2571-7048
N- and O-Trideuteromethylation of Drugs and Intermediates with Trimethyloxosulphonium Iodide-d 9 Enabled by a Mechanochemical Synthesis
Supported by: Department of Science and Technology, Ministry of Science and Technology, India
Supported by: All India Council for Technical Education
Funding Information PMD received a post-graduate fellowship from the All India Council for Technical Education (AICTE), New Delhi, India. SJD received a fellowship from the Department of Science and Technology (DST), Government of India. OCH received a post-graduate fellowship from the University Grants Commission (UGC), New Delhi, India.

Abstract
Solvent-free, sustainable organic synthetic approaches based on the use of microwaves, ultrasound, or mechanochemistry are needed from a green chemistry perspective. Mechanochemical synthesis involves the coupling of mechanical and chemical processes at the molecular level. In the present study, we have applied mechanochemistry for the deuteration of drugs and intermediates, particularly N- and O-trideuteromethylation. Conventionally, MeI-d 3, a carcinogenic and relatively expensive reagent, is used for introducing a trideuteromethyl (–OCD3) group in drugs/intermediates. Here, the utility of trimethyloxosulphonium iodide-d 9 (TDMSOI) was investigated as the –OCD3 source, for developing and optimizing a novel, one-pot, solvent-free, mechanochemical method for N- and O-trideuteromethylation of several drugs/intermediates with appreciable degree of deuteration (~90% D), particularly those containing phenol, acid, and amine functional groups. The investigated method is scalable and is of potential interest to the Medicinal Chemistry and Drug Discovery community, given the perceived importance of deuteration as a viable strategy for affecting the in vivo half-life of drugs.
Keywords
Deuterated drugs - Solvent-free synthesis - Mechanochemistry - Green synthesis - TrideuteromethylationSupplementary Material
- Supporting information for this article is available online at https://doi.org/10.1055/a-2571-7048.
- Supplementary Material
Publication History
Received: 29 October 2024
Accepted after revision: 31 March 2025
Accepted Manuscript online:
01 April 2025
Article published online:
21 May 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
Pranal M. Dharmik, Sandip J. Detke, Omkar C. Harasure, Prashant S. Kharkar. N- and O-Trideuteromethylation of Drugs and Intermediates with Trimethyloxosulphonium Iodide-d 9 Enabled by a Mechanochemical Synthesis. Sustainability & Circularity NOW 2025; 02: a25717048.
DOI: 10.1055/a-2571-7048
-
References
- 1
Mateti S,
Mathesh M,
Liu Z,
Tao T,
Ramireddy T,
Glushenkov AM,
Yang W,
Chen YI.
Mechanochemistry: A Force in Disguise and Conditional Effects towards Chemical Reactions.
ChemComm 2020; 57: 1080-1092
MissingFormLabel
- 2
Suslick KS.
Mechanochemistry and Sonochemistry: Concluding Remarks. Faraday Discuss. 2014; 170:
411-422
MissingFormLabel
- 3
Takacs L.
The Historical Development of Mechanochemistry. Chem. Soc. Rev. 2013; 42: 7649-7659
MissingFormLabel
- 4
O’Neill RT,
Boulatov R.
The Many Flavours of Mechanochemistry and its Plausible Conceptual Underpinnings.
Nat. Rev. Chem. 2021; 5: 148-167
MissingFormLabel
- 5
Liu X,
Li Y,
Zeng L,
Li X,
Chen N,
Bai S,
He H,
Wang Q,
Zhang C.
A Review on Mechanochemistry: Approaching Advanced Energy Materials with Greener Force.
Adv. Mater. 2022; 34: e2108327
MissingFormLabel
- 6
Halder A,
Krusenbaum A,
Grätz S,
Tigineh GT,
Borchardt L,
Kim JG.
The mechanochemical synthesis of polymers. Chem. Soc. Rev. 2022; 51 (07) 2873-2905
MissingFormLabel
- 7
Michalchuk AA. L,
Boldyreva EV,
Belenguer AM,
Emmerling F,
Boldyrev VV.
Tribochemistry, Mechanical Alloying, Mechanochemistry: What is in a Name?. Front.
Chem. 2021; 9: 685789
MissingFormLabel
- 8
Friščić T,
Mottillo C,
Titi HM.
Mechanochemistry for Synthesis. Angew. Chem., Int. Ed. Engl. 2020; 59 (03) 1018-1029
MissingFormLabel
- 9
Maiti D,
De Sarkar S.
Mechanochemical Synthesis of Functionalized Quinolines by Iodine Mediated Oxidative
Annulation. Chem. – Asian J. 2020; 15 (05) 577-580
MissingFormLabel
- 10
Atzrodt J,
Derdau V,
Kerr WJ,
Reid M.
Deuterium- and tritium-labelled compounds: Applications in the Life Sciences. Angew.
Chem., Int. Ed. 2018; 57 (07) 1758-1784
MissingFormLabel
- 11
Gómez-Gallego M,
Sierra MA.
Kinetic Isotope Effects in the Study of Organometallic Reaction Mechanisms. Chem.
Rev. 2011; 111 (08) 4857-4963
MissingFormLabel
- 12
Deuterated MA.
Drugs Draw Heavier Backing. Nat. Rev. Drug Discovery 2016; 15 (04) 219-221
MissingFormLabel
- 13a
Cleland WW.
The Use of Isotope Effects to Determine Enzyme Mechanisms. Arch. Biochem. Biophys.
2005; 433 (01) 2-12
MissingFormLabel
- 13b
Timmins GS.
Deuterated Drugs: Where are We Now?. Expert Opin. Ther. Pat. 2014; 24 (10) 1067-1075
MissingFormLabel
- 14
Gant TG.
Using Deuterium in Drug Discovery: Leaving the Label in the Drug. J. Med. Chem. 2014;
57 (09) 3595-3611
MissingFormLabel
- 15a
Kopf S,
Bourriquen F,
Li W,
Neumann H,
Junge K,
Beller M.
Recent Developments for The Deuterium and Tritium Labeling of Organic Molecules. Chem.
Rev. 2022; 122 (06) 6634-6718
MissingFormLabel
- 15b
Sun Q,
Soulé JF.
Broadening of Horizons in the Synthesis of CD3-Labeled Molecules. Chem. Soc. Rev. 2021; 50 (19) 10806-10835
MissingFormLabel
- 16
Barreiro EJ,
Kümmerle AE,
Fraga CA.
The Methylation Effect in Medicinal Chemistry. Chem. Rev. 2011; 111 (09) 5215-5246
MissingFormLabel
- 17
Schönherr H,
Cernak T.
Profound Methyl Effects in Drug Discovery and A Call for New C-H Methylation Reactions.
Angew. Chem., Int. Ed. Engl. 2013; 52 (47) 12256-12267
MissingFormLabel
- 18
Kuntz KW,
Campbell JE,
Keilhack H,
Pollock RM,
Knutson SK,
Porter-Scott M,
Richon VM,
Sneeringer CJ,
Wigle TJ,
Allain CJ,
Majer CR,
Moyer MP,
Copeland RA,
Chesworth R.
The Importance of Being Me: Magic Methyls, Methyltransferase Inhibitors, and the Discovery
of Tazemetostat. J. Med. Chem. 2016; 59 (04) 1556-1564
MissingFormLabel
- 19
Tung R.
Deuterated Benzo[d][1,3]-dioxol Derivatives. United States Pat. US7678914B2 2010 (Concert
Pharmaceuticals Inc.)
MissingFormLabel
- 20
Hoffman JM,
Habecker CN,
Pietruszkiewicz AM,
Bolhofer WA,
Cragoe Jr. EJ,
Torchiana ML,
Hirschmann R.
A Deuterium Isotope Effect on the Inhibition of Gastric Secretion by N,N-dimethyl-N′-[2-(diisopropylamino)ethyl]-N′-(4,6-dimethyl-2-pyridyl)urea.
Synthesis of Metabolites. J. Med. Chem. 1983; 26 (11) 1650-1653
MissingFormLabel
- 21
Mullard A.
First De Novo Deuterated Drug Poised for Approval. Nat. Rev. Drug Discovery 2022;
21 (09) 623-625
MissingFormLabel
- 22
Gupta H,
Perkins W,
Stark C,
Kikkeri S,
Kakazu J,
Kaye A,
Kaye A.
Deutetrabenazine for the Treatment of Chorea Associated with Huntington's Disease.
Health Psychol. Res. 2022; 10 (03) 36040
MissingFormLabel
- 23
DeWitt SH,
Maryanoff BE.
Deuterated Drug Molecules: Focus on FDA-approved Deutetrabenazine. Published as part
of the Biochemistry series “Biochemistry to Bedside”. Biochemistry 2018; 57 (05) 472-473
MissingFormLabel
- 24
Zha Z,
Ploessl K,
Choi SR,
Alexoff D,
Kung HF.
Preclinical evaluation of [18F]D3FSP, Deuterated AV-45, for Imaging of β-amyloid in the Brain. Nucl. Med. Biol.
2021; 92: 97-106
MissingFormLabel
- 25
Ma H,
Xu W,
Ni J,
Zhao N,
Tang S,
Li S.
et al. Phase I Clinical Trial of HC-1119 Soft Capsule in Chinese Healthy Adult Male
Subjects: Pharmacokinetics and Safety of Single-Dose Proportionality and Effects of
Food. Prostate 2022; 82 (02) 276-285
MissingFormLabel
- 26
Parente RM,
Tarantino PM,
Sippy BC,
Burdock GA.
Pharmacokinetic, Pharmacological, and Genotoxic Evaluation of Deuterated Caffeine.
Food Chem. Toxicol. 2022; 160: 112774
MissingFormLabel
- 27 Deuterium Medicinal Chemistry: A New Approach to Drug Discovery and Development https://www.jstage.jst.go.jp/article/medchem/24/2/24_8/_pdf (accessed on February 17, 2025)
MissingFormLabel
- 28 Deuterated Drugs: An Obvious Idea? https://www.science.org/content/blog-post/deute-rated-drugs-obvious-idea (accessed on February 17, 2025)
MissingFormLabel
- 29
Harbeson SL,
Tung RD.
Deuterium in Drug Discovery and Development. Ann. Rep. Med. Chem. 2011; 47: 403-417
MissingFormLabel
- 30
Lv Z,
Chu Y,
Wang Y.
HIV Protease Inhibitors: A Review of Molecular Selectivity and Toxicity. HIV AIDS
2015; 7: 95-104
MissingFormLabel
- 31
Khoury R,
Marx C,
Mirgati S,
Velury D,
Chakkamparambil B,
Grossberg GT.
AVP-786 as a Promising Treatment Option for Alzheimer's Disease including Agitation.
Expert Opin. Pharmacother. 2021; 22 (07) 783-795
MissingFormLabel
- 32
Shen Z,
Zhang S,
Geng H,
Wang J,
Zhang X,
Zhou A.
et al. Trideuteromethylation Enabled by a Sulfoxonium Metathesis Reaction. Org. Lett.
2019; 21 (02) 448-452
MissingFormLabel
- 33
Higashi T,
Kusumoto S,
Nozaki K.
Heterolytic Oxidative Addition of sp2 and sp3 C-H Bonds by Metal–Ligand Cooperation
with an Electron-Deficient Cyclopentadienone Iridium Complex. J. Am. Chem. Soc. 2021;
143 (33) 12999-13004
MissingFormLabel
- 34
Pony YR,
Hesk D,
Rivera N,
Pelczer I,
Chirik PJ.
Iron-catalysed Tritiation of Pharmaceuticals. Nature 2016; 529 (7585) 195-199
MissingFormLabel
- 35
Yang H,
Dormer PG,
Rivera NR,
Hoover AJ.
Palladium(II)-Mediated C−H Tritiation of Complex Pharmaceuticals. Angew. Chem., Int.
Ed. 2018; 57 (07) 1883-1887
MissingFormLabel
- 36
Yu Y,
Zhang B.
Photocatalytic Deuteration of Halides using D2O Over CdSe Porous Nanosheets: A Mild and Controllable Route to Deuterated Molecules.
Angew. Chem., Int. Ed. 2018; 57 (20) 5590-5592
MissingFormLabel
- 37
Loh YY,
Nagao K,
Hoover AJ,
Hesk D,
Rivera NR,
Colletti SL,
Davies IW,
MacMillan DW. C.
Photoredox-catalyzed Deuteration and Tritiation of Pharmaceutical Compounds. Science
2017; 358 (6367) 1182-1187
MissingFormLabel
- 38
Koniarczyk JL,
Hesk D,
Overgard A,
Davies IW,
McNally A.
A General Strategy for Site-Selective Incorporation of Deuterium and Tritium into
Pyridines, Diazines, and Pharmaceuticals. J. Am. Chem. Soc. 2018; 140 (06) 1990-1993
MissingFormLabel
- 39
Hale LV. A,
Szymczak NK.
Stereoretentive Deuteration of α-Chiral Amines with D2O. J. Am. Chem. Soc. 2016; 138 (41) 13489-13492
MissingFormLabel
- 40
Wang X,
Zhu M.-H,
Schuman DP,
Zhong D,
Wang W.-Y,
Wu L.-Y.
et al. General and Practical Potassium Methoxide/disilane-mediated Dehaloge-native
Deuteration of (hetero)arylhalides. J. Am. Chem. Soc. 2018; 140 (35) 10970-10974
MissingFormLabel
- 41
Soulard V,
Villa G,
Vollmar DP,
Renaud P.
Radical Deuteration with D2O: Catalysis and Mechanistic Insights. J. Am. Chem. Soc. 2018; 140 (01) 155-158
MissingFormLabel
- 42
Kuriyama M,
Kujirada S,
Tsukuda K,
Onomura O.
Nickel-catalyzed Deoxygenative Deuteration of Aryl Sulfamates. Adv. Synth. Catal.
2017; 359 (06) 1043-1048
MissingFormLabel
- 43
Valero M,
Weck R,
Güssregen S,
Atzrodt J,
Derdau V.
Highly Selective Directed Iridium- Catalyzed Hydrogen Isotope Exchange Reactions of
Aliphatic Amides. Angew. Chem., Int. Ed. 2018; 57 (27) 8159-8163
MissingFormLabel
- 44
Gao L,
Perato S,
Garcia-Argote S,
Taglang C,
Martínez-Prieto LM,
Chollet C.
et al. Ruthenium-catalyzed Hydrogen Isotope Exchange of C(sp3)–H Bonds Directed by
a Sulfur Atom. Chem. Commun. 2018; 54 (24) 2986-2989
MissingFormLabel
- 45
Kar S,
Goeppert A,
Sen R,
Kothandaraman J,
Surya Prakash GK.
Regioselective Deuteration of Alcohols in D2O Catalysed by Homogeneous Manganese and Iron Pincer Complexes. Green Chem. 2018;
20 (12) 2706-2710
MissingFormLabel
- 46
Yin D.-W,
Liu G.
Palladium-catalyzed Regioselective C–H Functionalization of Arenes Substituted by
Two N-heterocycles and Application in Late-stage Functionalization. J. Org. Chem.
2018; 83 (07) 3987-4001
MissingFormLabel
- 47
Zhao D,
Luo H,
Chen B,
Chen W,
Zhang G,
Yu Y.
Palladium-catalyzed H/D Exchange Reaction with 8-Aminoquinoline as The Directing Group:
Access to Ortho-Selective Deuterated Aromatic Acids and Β-Selective Deuterated Aliphatic
Acids. J. Org. Chem. 2018; 83 (15) 7860-7866
MissingFormLabel
- 48
Ding Y,
Luo S,
Adijiang A,
Zhao H,
An J.
Reductive Deuteration of Nitriles: The Synthesis of α,α-Dideuterio Amines by Sodium-mediated
Electron Transfer Reactions. J. Org. Chem. 2018; 83 (19) 12269-12274
MissingFormLabel
- 49
Liu C,
Chen Z,
Su C,
Zhao X,
Gao Q,
Ning G.-H.
et al. Controllable Deuteration of Halogenated Compounds by Photocatalytic D2O Splitting. Nat. Commun. 2018; 9 (01) 80
MissingFormLabel
- 50
Li X,
Wu S,
Chen S,
Lai Z,
Luo H.-B,
Sheng C.
One-pot Synthesis of Deuterated Aldehydes from Arylmethyl Halides. Org. Lett. 2018;
20 (07) 1712-1715
MissingFormLabel
- 51
Zhang M,
Yuan X.-A,
Zhu C,
Xie J.
Deoxygenative Deuteration of Carboxylic Acids with D2O. Angew. Chem., Int. Ed. 2019; 58 (01) 312-316
MissingFormLabel
- 52
Gowrisankar S,
Neumann H,
Beller M.
A Convenient and Practical Synthesis of Anisoles and Deuterated Anisoles by Palladium-Catalyzed
Coupling Reactions of Aryl Bromides and Chlorides. Chem. – Eur. J. 2012; 18 (09) 2498-2502
MissingFormLabel
- 53
Dash P,
Janni M,
Peruncheralathan S.
Trideuteriomethoxylation of Aryl and Heteroaryl Halides. Eur. J. Org. Chem. 2012;
26: 4914-4917
MissingFormLabel
- 54
Vanderheiden S,
Bulat B,
Zevaco T,
Jung N,
Bräse S.
Solid Phase Synthesis of Selectively Deuterated Arenes. Chem. Commun. 2011; 47 (32)
9063-9065
MissingFormLabel
- 55
Caporaso R,
Manna S,
Zinken S,
Kochnev AR,
Lukyanenko ER,
Kurkin AV.
et al. Radical Trideuteromethylation with Deuterated Dimethyl Sulfoxide in the Synthesis
of Heterocycles and Labelled Building Blocks. Chem. Commun. 2016; 52 (84) 12486-12489
MissingFormLabel
- 56a
Dolphin D.
and Economical Preparation of L-Methionine-Methyl-d33
. Anal. Biochem. 1970; 342: 338-342
MissingFormLabel
- 56b
Yu ZW,
Quinn PJ.
Dimethyl Sulphoxide: A Review of its Applications in Cell Biology. Biosci. Rep. 1994;
14 (06) 259-281
MissingFormLabel
- 57
Cotton FA,
Fassnacht JH,
Horroks Jr. WD,
Nelson NA.
Rapid, Simple, and Inexpensive Preparation of [2H3] Methyl Iodide and [2H6] Dimethyl Sulphoxide. J. Chem. Soc. 1959; 4138-4139
MissingFormLabel
- 58a
Zhang Y,
Liu W,
Xu Y,
Liu Y,
Peng J,
Wang M,
Bai Y,
Lu H,
Shi Z,
Shao X.
S-(Methyl-d3) Arylsulfonothioates: A Family of Robust, Shelf-Stable, And Easily Scalable Reagents
for Direct Trideuteromethylthiolation. Org. Lett. 2022; 24 (37) 6794-6799
MissingFormLabel
- 58b
Huang CM,
Li J,
Ai JJ,
Liu XY,
Rao W,
Wang SY.
Visible-Light-Promoted Cross-Coupling Reactions of Aryldiazonium Salts with S-methyl-d3Sulfonothioate or Se-methyl-d3 Selenium Sulfonate: Synthesis of Trideuteromethylated Sulfides, Sulfoxides, and Selenides.
Org. Lett. 2020; 22 (22) 9128-9132
MissingFormLabel
- 58c
Zhu MH,
Yu CL,
Feng YL,
Usman M,
Zhong D,
Wang X,
Nesnas N,
Liu WB.
Detosylative (Deutero)alkylation of Indoles and Phenols with (Deutero)alkoxides. Org.
Lett. 2019; 21 (17) 7073-7077
MissingFormLabel
- 58d
Wang M,
Zhao Y,
Zhao Y,
Shi Z.
Bioinspired Design of a Robust d3-Methylating Agent. Sci. Adv. 2020; 6 (19) eaba0946
MissingFormLabel
- 58e
Wu MC,
Li MZ,
Chen YX,
Liu F,
Xiao JA,
Chen K,
Xiang HY,
Yang H.
Photoredox-Catalyzed C-H Trideuteromethylation of Quinoxalin-2(1H)-ones with CDCl3 as the “CD3” Source. Org. Lett. 2022; 24 (35) 6412-6416
MissingFormLabel
- 58f
Xiao X,
Huang YQ,
Tian HY,
Bai J,
Cheng F,
Wang X,
Ke ML,
Chen FE.
Robust, Scalable Construction of an Electrophilic Deuterated Methylthiolating Reagent:
Facile Access to SCD3-containing Scaffolds. Chem. Commun. 2022; 58 (18) 3015-3018
MissingFormLabel
- 58g
Goyal V,
Sarki N,
Narani A,
Naik G,
Natte K,
Jagadeesh RV.
Recent Advances in the Catalytic N-Methylation and N-Trideuteromethylation Reactions
using Methanol and Deuterated Methanol. Coord. Chem. Rev. 2023; 474: 214827
MissingFormLabel
- 59
Forrester J,
Jones RV. H,
Prestonb PN,
Simpson ES. C.
Generation of Trimethylsulfonium Cation from Dimethyl Sulfoxide and Dimethyl Sulfate:
Implications for The Synthesis of Epoxides from Aldehydes and Ketones. J. Chem. Soc.,
Perkin Trans. 1995; 1 (18) 2289-2291
MissingFormLabel