Subscribe to RSS
DOI: 10.1055/a-2563-9791
Primary Cilia in Hepatic Biliary Hyperplasia: Implications for Liver Diseases
Funding This work was supported by National Institutes of Health Grant R01DK132781 (to S.A.G.), Cholangiocarcinoma Foundation (to K.P.), and The Hormel Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Abstract
Primary cilia, hair-like projections on the surface of various cell types, play crucial roles in sensing and regulating environmental cues within the liver, particularly among cholangiocytes. These structures detect changes in bile composition, flow, and other biochemical signals, integrating this information to modulate cellular processes. Dysfunction in cholangiocyte cilia—whether due to structural abnormalities or genetic mutations—has been linked to an array of cholangiopathies and ciliopathies. These include conditions such as biliary atresia, cholangiocarcinoma, primary sclerosing cholangitis, and polycystic liver diseases, each with distinct clinical phenotypes influenced by impaired ciliary function. Given the complexity of the ciliary proteome and its role in cellular signaling, including the Hedgehog, Wnt, and TGR5 pathways, ciliary dysfunction disrupts essential signaling cascades, thus driving disease progression. While over 40 gene mutations are associated with ciliopathic features, there may be additional contributors within the expansive ciliary proteome. This study synthesizes current knowledge on cholangiocyte cilia, emphasizing their mechanistic role in liver disease, and highlights emerging therapeutic strategies aimed at restoring ciliary function. In conclusion, ciliotherapies are proposed as a promising approach for addressing cholangiopathies, with the potential to shift the current therapeutic landscape.
Keywords
primary cilia - cholangiocyte - ciliopathy - polycystic liver diseases - primary sclerosing cholangitis - cholangiocarcinoma - ciliotherapies* Equal contribution.
Publication History
Accepted Manuscript online:
21 March 2025
Article published online:
25 April 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1
Luo N,
Conwell MD,
Chen X.
et al.
Primary cilia signaling mediates intraocular pressure sensation. Proc Natl Acad Sci
U S A 2014; 111 (35) 12871-12876
MissingFormLabel
- 2
Anvarian Z,
Mykytyn K,
Mukhopadhyay S,
Pedersen LB,
Christensen ST.
Cellular signalling by primary cilia in development, organ function and disease. Nat
Rev Nephrol 2019; 15 (04) 199-219
MissingFormLabel
- 3
Carotenuto P,
Gradilone SA,
Franco B.
Cilia and cancer: from molecular genetics to therapeutic strategies. Genes (Basel)
2023; 14 (07) 14
MissingFormLabel
- 4
Peixoto E,
Richard S,
Pant K,
Biswas A,
Gradilone SA.
The primary cilium: Its role as a tumor suppressor organelle. Biochem Pharmacol 2020;
175: 113906
MissingFormLabel
- 5
Mansini AP,
Lorenzo Pisarello MJ,
Thelen KM.
et al.
MicroRNA (miR)-433 and miR-22 dysregulations induce histone-deacetylase-6 overexpression
and ciliary loss in cholangiocarcinoma. Hepatology 2018; 68 (02) 561-573
MissingFormLabel
- 6
Larusso NF,
Masyuk TV.
The role of cilia in the regulation of bile flow. Dig Dis 2011; 29 (01) 6-12
MissingFormLabel
- 7
Wheway G,
Nazlamova L,
Hancock JT.
Signaling through the primary cilium. Front Cell Dev Biol 2018; 6: 8
MissingFormLabel
- 8
Hilgendorf KI,
Myers BR,
Reiter JF.
Emerging mechanistic understanding of cilia function in cellular signalling. Nat Rev
Mol Cell Biol 2024; 25 (07) 555-573
MissingFormLabel
- 9
Jiang M,
Palicharla VR,
Miller D.
et al.
Human IFT-A complex structures provide molecular insights into ciliary transport.
Cell Res 2023; 33 (04) 288-298
MissingFormLabel
- 10
Masyuk AI,
Masyuk TV,
Splinter PL,
Huang BQ,
Stroope AJ,
LaRusso NF.
Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular
Ca2+ and cAMP signaling. Gastroenterology 2006; 131 (03) 911-920
MissingFormLabel
- 11
Xiao ZS,
Quarles LD.
Role of the polycytin-primary cilia complex in bone development and mechanosensing.
Ann N Y Acad Sci 2010; 1192 (01) 410-421
MissingFormLabel
- 12
Nauli SM,
Alenghat FJ,
Luo Y.
et al.
Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells.
Nat Genet 2003; 33 (02) 129-137
MissingFormLabel
- 13
Gradilone SA,
Masyuk AI,
Splinter PL.
et al.
Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing
bicarbonate secretion. Proc Natl Acad Sci U S A 2007; 104 (48) 19138-19143
MissingFormLabel
- 14
Mansini AP,
Peixoto E,
Jin S,
Richard S,
Gradilone SA.
The chemosensory function of primary cilia regulates cholangiocyte migration, invasion
and tumor growth. Hepatology 2019; 69 (04) 1582-1598
MissingFormLabel
- 15
Masyuk AI,
Gradilone SA,
Banales JM.
et al.
Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides
via P2Y12 purinergic receptors. Am J Physiol Gastrointest Liver Physiol 2008; 295
(04) G725-G734
MissingFormLabel
- 16
Schou KB,
Pedersen LB,
Christensen ST.
Ins and outs of GPCR signaling in primary cilia. EMBO Rep 2015; 16 (09) 1099-1113
MissingFormLabel
- 17
Keitel V,
Ullmer C,
Häussinger D.
The membrane-bound bile acid receptor TGR5 (Gpbar-1) is localized in the primary cilium
of cholangiocytes. Biol Chem 2010; 391 (07) 785-789
MissingFormLabel
- 18
Reich M,
Deutschmann K,
Sommerfeld A.
et al.
TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and
in vitro. Gut 2016; 65 (03) 487-501
MissingFormLabel
- 19
Masyuk AI,
Huang BQ,
Radtke BN.
et al.
Ciliary subcellular localization of TGR5 determines the cholangiocyte functional response
to bile acid signaling. Am J Physiol Gastrointest Liver Physiol 2013; 304 (11) G1013-G1024
MissingFormLabel
- 20
Hogan MC,
Manganelli L,
Woollard JR.
et al.
Characterization of PKD protein-positive exosome-like vesicles. J Am Soc Nephrol 2009;
20 (02) 278-288
MissingFormLabel
- 21
Wood CR,
Rosenbaum JL.
Ciliary ectosomes: transmissions from the cell's antenna. Trends Cell Biol 2015; 25
(05) 276-285
MissingFormLabel
- 22
Masyuk AI,
Huang BQ,
Ward CJ.
et al.
Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through
interaction with primary cilia. Am J Physiol Gastrointest Liver Physiol 2010; 299
(04) G990-G999
MissingFormLabel
- 23
Omenetti A,
Diehl AM.
Hedgehog signaling in cholangiocytes. Curr Opin Gastroenterol 2011; 27 (03) 268-275
MissingFormLabel
- 24
Bangs F,
Anderson KV.
Primary cilia and mammalian Hedgehog signaling. Cold Spring Harb Perspect Biol 2017;
9 (05) 9
MissingFormLabel
- 25
Razumilava N,
Gradilone SA,
Smoot RL.
et al.
Non-canonical Hedgehog signaling contributes to chemotaxis in cholangiocarcinoma.
J Hepatol 2014; 60 (03) 599-605
MissingFormLabel
- 26
Sato Y,
Yamamura M,
Sasaki M,
Harada K.
Blockade of Hedgehog signaling attenuates biliary cystogenesis in the polycystic kidney
(PCK) rat. Am J Pathol 2018; 188 (10) 2251-2263
MissingFormLabel
- 27
Anichini G,
Carrassa L,
Stecca B,
Marra F,
Raggi C.
The role of the Hedgehog pathway in cholangiocarcinoma. Cancers (Basel) 2021; 13 (19)
4774
MissingFormLabel
- 28
Hor CHH,
Lo JCW,
Cham ALS,
Leong WY,
Goh ELK.
Multifaceted functions of Rab23 on primary cilium-mediated and Hedgehog signaling-mediated
cerebellar granule cell proliferation. J Neurosci 2021; 41 (32) 6850-6863
MissingFormLabel
- 29
Liu J,
Xiao Q,
Xiao J.
et al.
Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities.
Signal Transduct Target Ther 2022; 7 (01) 3
MissingFormLabel
- 30
Vicent S,
Lieshout R,
Saborowski A.
et al.
Experimental models to unravel the molecular pathogenesis, cell of origin and stem
cell properties of cholangiocarcinoma. Liver Int 2019; 39 (Suppl. 01) 79-97
MissingFormLabel
- 31
Youn YH,
Hou S,
Wu CC.
et al.
Primary cilia control translation and the cell cycle in medulloblastoma. Genes Dev
2022; 36 (11-12): 737-751
MissingFormLabel
- 32
Zhou B,
Lin W,
Long Y.
et al.
Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct
Target Ther 2022; 7 (01) 95
MissingFormLabel
- 33
Takahashi K,
Sato Y,
Yamamura M.
et al.
Notch-Hes1 signaling activation in Caroli disease and polycystic liver disease. Pathol
Int 2021; 71 (08) 521-529
MissingFormLabel
- 34
Zhang X,
Du G,
Xu Y.
et al.
Inhibition of notch signaling pathway prevents cholestatic liver fibrosis by decreasing
the differentiation of hepatic progenitor cells into cholangiocytes. Lab Invest 2016;
96 (03) 350-360
MissingFormLabel
- 35
Rauff B,
Malik A,
Bhatti YA,
Chudhary SA,
Qadri I,
Rafiq S.
Notch signalling pathway in development of cholangiocarcinoma. World J Gastrointest
Oncol 2020; 12 (09) 957-974
MissingFormLabel
- 36
Hansen CG,
Moroishi T,
Guan KL.
YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol 2015; 25 (09)
499-513
MissingFormLabel
- 37
Habbig S,
Bartram MP,
Sägmüller JG.
et al.
The ciliopathy disease protein NPHP9 promotes nuclear delivery and activation of the
oncogenic transcriptional regulator TAZ. Hum Mol Genet 2012; 21 (26) 5528-5538
MissingFormLabel
- 38
Kim M,
Kim M,
Lee MS,
Kim CH,
Lim DS.
The MST1/2–SAV1 complex of the Hippo pathway promotes ciliogenesis. Nat Commun 2014;
5: 5370
MissingFormLabel
- 39
Lee EJ,
Seo E,
Kim JW.
et al.
TAZ/Wnt-β-catenin/c-MYC axis regulates cystogenesis in polycystic kidney disease.
Proc Natl Acad Sci U S A 2020; 117 (46) 29001-29012
MissingFormLabel
- 40
Cigliano A,
Zhang S,
Ribback S.
et al.
The Hippo pathway effector TAZ induces intrahepatic cholangiocarcinoma in mice and
is ubiquitously activated in the human disease. J Exp Clin Cancer Res 2022; 41 (01)
192
MissingFormLabel
- 41
Boehlke C,
Kotsis F,
Patel V.
et al.
Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat Cell Biol 2010;
12 (11) 1115-1122
MissingFormLabel
- 42
Lai Y,
Jiang Y.
Reciprocal regulation between primary cilia and mTORC1. Genes (Basel) 2020; 11 (06)
11
MissingFormLabel
- 43
Malhi H,
Camilleri M.
Modulating bile acid pathways and TGR5 receptors for treating liver and GI diseases.
Curr Opin Pharmacol 2017; 37: 80-86
MissingFormLabel
- 44
Deutschmann K,
Reich M,
Klindt C.
et al.
Bile acid receptors in the biliary tree: TGR5 in physiology and disease. Biochim Biophys
Acta Mol Basis Dis 2018; 1864 (4 Pt B): 1319-1325
MissingFormLabel
- 45
Pols TWH,
Noriega LG,
Nomura M,
Auwerx J,
Schoonjans K.
The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation.
J Hepatol 2011; 54 (06) 1263-1272
MissingFormLabel
- 46
Pant K,
Richard S,
Peixoto E.
et al.
Cholangiocyte ciliary defects induce sustained epidermal growth factor receptor signaling.
Hepatology 2025; 81 (04) 1132-1145
MissingFormLabel
- 47
Reich M,
Spomer L,
Klindt C.
et al.
Downregulation of TGR5 (GPBAR1) in biliary epithelial cells contributes to the pathogenesis
of sclerosing cholangitis. J Hepatol 2021; 75 (03) 634-646
MissingFormLabel
- 48
Deutschmann K,
Reich M,
Klindt C.
et al.
Bile acid receptors in the biliary tree: TGR5 in physiology and disease. Biochim Biophys
Acta Mol Basis Dis 2018; 1864 (4 Pt B): 1319-1325
MissingFormLabel
- 49
Keitel V,
Cupisti K,
Ullmer C,
Knoefel WT,
Kubitz R,
Häussinger D.
The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human
gallbladders. Hepatology 2009; 50 (03) 861-870
MissingFormLabel
- 50
Masyuk TV,
Masyuk AI,
Lorenzo Pisarello M.
et al.
TGR5 contributes to hepatic cystogenesis in rodents with polycystic liver diseases
through cyclic adenosine monophosphate/Gαs signaling. Hepatology 2017; 66 (04) 1197-1218
MissingFormLabel
- 51
Schneider L,
Clement CA,
Teilmann SC.
et al.
PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts.
Curr Biol 2005; 15 (20) 1861-1866
MissingFormLabel
- 52
Tsai YC,
Kuo TN,
Chao YY.
et al.
PDGF-AA activates AKT and ERK signaling for testicular interstitial Leydig cell growth
via primary cilia. J Cell Biochem 2023; 124 (01) 89-102
MissingFormLabel
- 53
Clement CA,
Ajbro KD,
Koefoed K.
et al.
TGF-β signaling is associated with endocytosis at the pocket region of the primary
cilium. Cell Rep 2013; 3 (06) 1806-1814
MissingFormLabel
- 54
Waddell SH,
Yao Y,
Olaizola P.
et al.
A TGFβ-ECM-integrin signaling axis drives structural reconfiguration of the bile duct
to promote polycystic liver disease. Sci Transl Med 2023; 15 (713) eabq5930
MissingFormLabel
- 55
Masyuk TV,
Masyuk AI,
LaRusso NF.
Polycystic liver disease: the interplay of genes causative for hepatic and renal cystogenesis.
Hepatology 2018; 67 (06) 2462-2464
MissingFormLabel
- 56
Goggolidou P,
Richards T..
The genetic of autosomal recessive polycystic kidney disease (ARRPKD). BBA - Molecular
Basis of Disease 2022; 1868: 166348
MissingFormLabel
- 57
Cornec-Le Gall E,
Torres VE,
Harris PC.
Genetic complexity of autosomal dominant polycystic kidney and liver diseases. J Am
Soc Nephrol 2018; 29 (01) 13-23
MissingFormLabel
- 58
Masyuk TV,
Masyuk AI,
LaRusso NF.
Polycystic liver disease: advances in understanding and treatment. Annu Rev Pathol
2022; 17: 251-269
MissingFormLabel
- 59
Fabris L,
Fiorotto R,
Spirli C.
et al.
Pathobiology of inherited biliary diseases: a roadmap to understand acquired liver
diseases. Nat Rev Gastroenterol Hepatol 2019; 16 (08) 497-511
MissingFormLabel
- 60
Gradilone SA,
Masyuk TV,
Huang BQ.
et al.
Activation of Trpv4 reduces the hyperproliferative phenotype of cystic cholangiocytes
from an animal model of ARPKD. Gastroenterology 2010; 139 (01) 304-14.e2
MissingFormLabel
- 61
Masyuk TV,
Masyuk AI,
LaRusso NF.
Therapeutic targets in polycystic liver disease. Curr Drug Targets 2017; 18 (08) 950-957
MissingFormLabel
- 62
Lee SH,
Somlo S.
Cyst growth, polycystins, and primary cilia in autosomal dominant polycystic kidney
disease. Kidney Res Clin Pract 2014; 33 (02) 73-78
MissingFormLabel
- 63
Douguet D,
Patel A,
Honoré E.
Structure and function of polycystins: insights into polycystic kidney disease. Nat
Rev Nephrol 2019; 15 (07) 412-422
MissingFormLabel
- 64
Ma M,
Gallagher AR,
Somlo S.
Ciliary mechanisms of cyst formation in polycystic kidney disease. Csh Perspect Biol
2017; 9: a028209
MissingFormLabel
- 65
Hellen DJ,
Bennett A,
Malla S.
et al.
Liver-restricted deletion of the biliary atresia candidate gene Pkd1l1 causes bile
duct dysmorphogenesis and ciliopathy. Hepatology 2023; 77 (04) 1274-1286
MissingFormLabel
- 66
Karjoo S,
Hand NJ,
Loarca L,
Russo PA,
Friedman JR,
Wells RG.
Extrahepatic cholangiocyte cilia are abnormal in biliary atresia. J Pediatr Gastroenterol
Nutr 2013; 57 (01) 96-101
MissingFormLabel
- 67
Hartley JL,
O'Callaghan C,
Rossetti S.
et al.
Investigation of primary cilia in the pathogenesis of biliary atresia. J Pediatr Gastroenterol
Nutr 2011; 52 (04) 485-488
MissingFormLabel
- 68
Lam WY,
Tang CSM,
So MT.
et al.
Identification of a wide spectrum of ciliary gene mutations in nonsyndromic biliary
atresia patients implicates ciliary dysfunction as a novel disease mechanism. EBioMedicine
2021; 71: 103530
MissingFormLabel
- 69
Glessner JT,
Ningappa MB,
Ngo KA.
et al.
Biliary atresia is associated with polygenic susceptibility in ciliogenesis and planar
polarity effector genes. J Hepatol 2023; 79 (06) 1385-1395
MissingFormLabel
- 70
Gradilone SA,
Radtke BN,
Bogert PS,
Huang BQ,
Gajdos GB,
LaRusso NF.
HDAC6 inhibition restores ciliary expression and decreases tumor growth. Cancer Res
2013; 73 (07) 2259-2270
MissingFormLabel
- 71
Chen J,
Cheng NC,
Boland JA.
et al.
Deletion of kif3a in CK19 positive cells leads to primary cilia loss, biliary cell
proliferation and cystic liver lesions in TAA-treated mice. Biochim Biophys Acta Mol
Basis Dis 2022; 1868 (04) 166335
MissingFormLabel
- 72
Pant K,
Peixoto E,
Richard S.
et al.
Histone deacetylase sirtuin 1 promotes loss of primary cilia in cholangiocarcinoma.
Hepatology 2021; 74 (06) 3235-3248
MissingFormLabel
- 73
Mansini AP,
Lorenzo Pisarello MJ,
Thelen KM.
et al.
MiR-433 and miR-22 dysregulations induce HDAC6 overexpression and ciliary loss in
cholangiocarcinoma. Hepatology 2018; 68: 561-573
MissingFormLabel
- 74
Pant K,
Richard S,
Gradilone SA.
Short-chain fatty acid butyrate induces cilia formation and potentiates the effects
of HDAC6 inhibitors in cholangiocarcinoma cells. Front Cell Dev Biol 2022; 9: 809382
MissingFormLabel
- 75
Pant K,
Peixoto E,
Richard S,
Gradilone SA.
Role of histone deacetylases in carcinogenesis: potential role in cholangiocarcinoma.
Cells 2020; 9 (03) 9
MissingFormLabel
- 76
Pant K,
Richard S,
Peixoto E.
et al.
The NAMPT inhibitor FK866 in combination with cisplatin reduces cholangiocarcinoma
cells growth. Cells 2023; 12 (05) 12
MissingFormLabel
- 77
Pant K,
Gradilone SA.
NAMPT overexpression drives cell growth in polycystic liver disease through mitochondrial
metabolism regulation. Am J Pathol 2024; 194 (08) 1528-1537
MissingFormLabel
- 78
Pant K,
Yadav AK,
Gupta P,
Islam R,
Saraya A,
Venugopal SK.
Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic
cancer cells. Redox Biol 2017; 12: 340-349
MissingFormLabel
- 79
Peixoto E,
Jin S,
Thelen K.
et al.
HDAC6-dependent ciliophagy is involved in ciliary loss and cholangiocarcinoma growth
in human cells and murine models. Am J Physiol Gastrointest Liver Physiol 2020; 318
(06) G1022-G1033
MissingFormLabel
- 80
Morleo M,
Brillante S,
Formisano U.
et al.
Regulation of autophagosome biogenesis by OFD1-mediated selective autophagy. EMBO
J 2021; 40 (04) e105120
MissingFormLabel
- 81
Yamamoto Y,
Mizushima N.
Autophagy and ciliogenesis. JMA J 2021; 4 (03) 207-215
MissingFormLabel
- 82
Shi P,
Hoang-Minh LB,
Tian J.
et al.
HDAC6 signaling at primary cilia promotes proliferation and restricts differentiation
of glioma cells. Cancers (Basel) 2021; 13 (07) 13
MissingFormLabel
- 83
European Association for the Study of the Liver.
Electronic address eee, European Association for the study of the L: EASL clinical
practice guidelines: the diagnosis and management of patients with primary biliary
cholangitis. J Hepatol 2017; 67: 145-172
MissingFormLabel
- 84
Jiang X,
Karlsen TH.
Genetics of primary sclerosing cholangitis and pathophysiological implications. Nat
Rev Gastroenterol Hepatol 2017; 14 (05) 279-295
MissingFormLabel
- 85
Song J,
Li Y,
Bowlus CL,
Yang G,
Leung PSC,
Gershwin ME.
Cholangiocarcinoma in patients with primary sclerosing cholangitis (PSC): a comprehensive
review. Clin Rev Allergy Immunol 2020; 58 (01) 134-149
MissingFormLabel
- 86
Assis DN,
Bowlus CL.
Recent advances in the management of primary sclerosing cholangitis. Clin Gastroenterol
Hepatol 2023; 21 (08) 2065-2075
MissingFormLabel
- 87
Masyuk TV,
Masyuk AI,
LaRusso NF.
TGR5 in the cholangiociliopathies. Dig Dis 2015; 33 (03) 420-425
MissingFormLabel
- 88
Carpino G,
Cardinale V,
Folseraas T.
et al.
Neoplastic transformation of the peribiliary stem cell niche in cholangiocarcinoma
arisen in primary sclerosing cholangitis. Hepatology 2019; 69 (02) 622-638
MissingFormLabel
- 89
Grammatikopoulos T,
Strautnieks S,
Sambrotta M.
et al.
Mutations in Dcdc2, encoding doublecortin domain-containing protein 2, cause neonatal
sclerosing cholangitis. J Hepatol 2015; 62: 271
MissingFormLabel
- 90
Grimsrud MM,
Folseraas T.
Pathogenesis, diagnosis and treatment of premalignant and malignant stages of cholangiocarcinoma
in primary sclerosing cholangitis. Liver Int 2019; 39 (12) 2230-2237
MissingFormLabel
- 91
Tabibian JH,
Masyuk AI,
Masyuk TV,
O'Hara SP,
LaRusso NF.
Physiology of cholangiocytes. Compr Physiol 2013; 3 (01) 541-565
MissingFormLabel
- 92
Pant K,
Gradilone SA.
Hepatobiliary cancers: progress in diagnosis, pathogenesis, and treatment. Technol
Cancer Res Treat 2022; 21: 15 330338221097203
MissingFormLabel
- 93
Masyuk AI,
Masyuk TV,
Trussoni CE,
Pirius NE,
LaRusso NF.
Autophagy promotes hepatic cystogenesis in polycystic liver disease by depletion of
cholangiocyte ciliogenic proteins. Hepatology 2022; 75 (05) 1110-1122
MissingFormLabel
- 94
Esser H,
Kilpatrick AM,
Man TY.
et al.
Primary cilia as a targetable node between biliary injury, senescence and regeneration
in liver transplantation. J Hepatol 2024; 81 (06) 1005-1022
MissingFormLabel
- 95
Boulter L,
Guest RV,
Kendall TJ.
et al.
WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited.
J Clin Invest 2015; 125 (03) 1269-1285
MissingFormLabel
- 96
Fried S,
Har-Zahav A,
Hamudi Y.
et al.
Biliary atresia: insights into mechanisms using a toxic model of the disease including
Wnt and Hippo signaling pathways and microtubules. . Pediatr Res 2024
MissingFormLabel
- 97
Dropmann A,
Dooley S,
Dewidar B.
et al.
TGF-β2 silencing to target biliary-derived liver diseases. Gut 2020; 69 (09) 1677-1690
MissingFormLabel
- 98
Lee D,
Do IG,
Choi K.
et al.
The expression of phospho-AKT1 and phospho-MTOR is associated with a favorable prognosis
independent of PTEN expression in intrahepatic cholangiocarcinomas. Mod Pathol 2012;
25 (01) 131-139
MissingFormLabel
- 99
Spirli C,
Mariotti V,
Villani A,
Fabris L,
Fiorotto R,
Strazzabosco M.
Adenylyl cyclase 5 links changes in calcium homeostasis to cAMP-dependent cyst growth
in polycystic liver disease. J Hepatol 2017; 66 (03) 571-580
MissingFormLabel