Subscribe to RSS
DOI: 10.1055/a-2563-0725
MRI for diagnosing dementia – update 2025
MRT zur Demenzdiagnostik – Update 2025
Abstract
Background
Magnetic resonance imaging (MRI) plays a crucial role alongside clinical and neuropsychological assessments in diagnosing dementia. The recent and ongoing advancements in MRI technology have significantly enhanced the detection and characterization of the specific neurostructural changes seen in various neurodegenerative diseases, thereby significantly increasing the precision of diagnosis. Within this context of perpetual evolution, this review article explores the recent advances in MRI with regard to diagnosing dementia.
Methods
A retrospective literature review was conducted by searching the PubMed and ScienceDirect databases for the keywords “dementia”, “imaging”, and “MRI”. The inclusion criteria were scientific papers in English that revolved around the role of MRI as a diagnostic tool in the field of dementia. A specific time frame was not determined but the focus was on current articles, with an overall of 20 articles dating from the last 6 years (after 2018), corresponding to 55% of the total number of articles.
Results
This review provides a comprehensive overview of the latest advances in the radiologic diagnosis of dementia using MRI, with a particular focus on the last 6 years. Technical aspects of image acquisition for clinical and research purposes are discussed. MRI findings typical of dementia are described. The findings are divided into non-specific findings of dementia and characteristic findings for certain dementia subtypes. This provides information about possible causes of dementia. In addition, developed scoring systems that support MRI findings are presented, including the MTA score for Alzheimer’s disease with corresponding illustrative figures.
Conclusion
The symbiosis of clinical evaluation with high-field MRI methodologies enhances dementia diagnosis and offers a holistic and nuanced understanding of structural brain changes associated with dementia and its various subtypes. The latest advances, mainly involving the emergence of ultra-high-field (7T) MRI, despite having limited use in clinical practice, mark a pragmatic shift in the field of research.
Key Points
-
High-field MRI (3T) and specialized sequences allow for the detection of early structural changes indicative of dementia.
-
Characteristic neuroanatomical MRI patterns enable the differentiation between various subtypes of dementia.
-
Established scales provide added value to the quantification and categorization of MRI findings in dementia.
Citation Format
-
Akl E, Dyrba M, Görß D et al. MRI for diagnosing dementia – update 2024. Rofo 2025; DOI 10.1055/a-2563-0725
Zusammenfassung
Hintergrund
Die Magnetresonanztomografie (MRT) spielt neben klinischen und neuropsychologischen Untersuchungen eine entscheidende Rolle bei der Diagnose von Demenzerkrankungen. Die laufenden Fortschritte in der MRT-Technologie haben die Erkennung und Charakterisierung der spezifischen neurostrukturellen Veränderungen bei verschiedenen neurodegenerativen Erkrankungen erheblich verbessert, was die Genauigkeit der Demenzdiagnose deutlich erhöht. Dieser Übersichtsartikel untersucht die jüngsten Fortschritte der MRT bei der Diagnose von Demenzerkrankungen.
Methoden
Im Rahmen einer retrospektiven Literaturrecherche wurden die Datenbanken PubMed und ScienceDirect nach den Stichworten „dementia“, „imaging“ und „MRI“ durchsucht. Die Aufnahmekriterien waren wissenschaftliche Arbeiten in englischer Sprache, die sich mit MRT-Aspekten der Demenz befassen. Ein bestimmter Zeitrahmen wurde nicht festgelegt, der Schwerpunkt lag aber auf aktuelle Artikeln, wobei insgesamt 20 Artikel aus den letzten 6 Jahren stammen (nach 2018), was 55% der Gesamtzahl der Artikel entspricht.
Ergebnisse
Diese Übersicht gibt einen umfassenden Überblick über die neuesten Fortschritte bei der radiologischen Diagnose von Demenz mittels MRT, mit besonderem Fokus auf die letzten 6 Jahre. Es werden technische Aspekte der Bilderfassung für klinische und Forschungszwecke erörtert. Es werden MRT-Befunde beschrieben, welche typisch für Demenzerkrankungen sind. Die Befunde werden unterteilt in unspezifische Befunde einer Demenz und in charakteristische Befunde für bestimmte Demenz-Subtypen. Dies gibt Aufschluss über mögliche Ursachen der Demenz. Darüber hinaus werden entwickelte Scoring-Systeme vorgestellt, die die MRT-Befundung unterstützen, darunter der MTA-Score für Alzheimer-Krankheit mit entsprechenden, illustrierenden Abbildungen.
Schlussfolgerung
Die Symbiose zwischen der klinischen Bewertung mit Hochfeld-MRT-Nutzung erweitert die Demenzdiagnose und bietet ein ganzheitliches und nuanciertes Verständnis der strukturellen Veränderungen des Gehirns im Zusammenhang mit Demenz und ihren verschiedenen Subtypen. Die jüngsten Fortschritte, die vor allem das Aufkommen der Ultrahochfeld-MRT (7 T) enthalten, markieren trotz ihres begrenzten Einsatzes in der klinischen Praxis ein Paradigmenwechsel im Bereich der Forschung.
Kernaussagen
-
Hochfeld-MRT (3T) und spezialisierte Sequenzen ermöglichen die Erkennung früher struktureller Veränderungen, die auf eine Demenz hindeuten.
-
Charakteristische neuroanatomische MRT-Muster erlauben die Unterscheidung verschiedener Demenzsubtypen.
-
Etablierte Skalen bieten einen zusätzlichen Mehrwert bei der Quantifizierung und Kategorisierung von MRT-Befunden bei Demenz.
Publication History
Received: 11 May 2024
Accepted after revision: 09 March 2025
Article published online:
10 April 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Margallo-Lana ML, Tyrer SP, Moore PB. Overview of the Diagnostic Instruments for Dementia in People with Intellectual Disability. In: Prasher V. , ed. Neuropsychological Assessments of Dementia in Down Syndrome and Intellectual Disabilities. Cham: Springer; 2018: 1-17
- 2 Ahmad DJ, Alghamdixx AA, Alshahrani NA. et al. The role of MRI in assessing cognitive impairment changes. Int J Community Med Public Health 2023; 10 (12)
- 3 Chouliaras L, O’Brien JT. The use of neuroimaging techniques in the early and differential diagnosis of dementia. Mol Psychiatry 2023; 28: 4084-4097
- 4 Deutsche Gesellschaft für Psychiatrie und Psychotherapie, Psychosomatik und Nervenheilkunde (DGPPN) und Deutsche Gesellschaft für Neurologie (DGN) (2023). S3-Leitlinie Demenz (Version 4.0). AWMF-Register Nr. 038–013.
- 5 Raji CA, Benzinger TLS. The Value of Neuroimaging in Dementia Diagnosis. Continuum (Minneap Minn) 2022; 28 (03) 800-821
- 6 Patel KP, Wymer DT, Bhatia VK. et al. Multimodality Imaging of Dementia: Clinical Importance and Role of Integrated Anatomic and Molecular Imaging. RadioGraphics 2020; 40: 200-222
- 7 Harper L, Barkhof F, Scheltens P. et al. An algorithmic approach to structural imaging in dementia. J Neurol Neurosurg Psychiatry 2014; 85: 692-698
- 8 Živanović M, Aracki Trenkić A, Milošević V. et al. The role of magnetic resonance imaging in the diagnosis and prognosis of dementia. Biomolecules and Biomedicine 2023; 23 (02) 209-224
- 9 Verhagen MV, Guit GL, Hafkamp GJ. et al. The impact of MRI combined with visual rating scales on the clinical diagnosis of dementia: a prospective study. Eur Radiol 2016; 26: 1716-1722
- 10 Bittner N, Jockwitz C, Franke K. et al. When your brain looks older than expected: combined lifestyle risk and BrainAGE. Brain Struct Funct 2021; 226 (03) 621-645
- 11 Ruiyang G, Yu Y, Qi YX. et al. Normative modelling of brain morphometry across the lifespan with CentileBrain: algorithm benchmarking and model optimisation. Lancet Digit Health 2024; 6 (03)
- 12 Nutt D, Hayes A, Fonville L. et al. Alcohol and the Brain. Nutrients 2021; 13 (11) 3938
- 13 Rossi DJ. Alcohol and the Cerebellum. In: Gruol DL, Koibuchi N, Manto M. , ed. Essentials of Cerebellum and Cerebellar Disorders. Cham: Springer; 2023: 431-439
- 14 Dhikav V, Duraiswamy S, Anand KS. Correlation between hippocampal volumes and medial temporal lobe atrophy in patients with Alzheimer’s disease. Ann Indian Acad Neurol 2017; 20 (01) 29-35
- 15 Pedraza MI, de Lera M, Bos D. et al. Brain atrophy and the risk of futile endovascular reperfusion in acute ischemic stroke. Stroke 2020; 51 (05) 1514-1521
- 16 Wei M, Shi J, Ni J. et al. A new age-related cutoff of medial temporal atrophy scale on MRI improving the diagnostic accuracy of neurodegeneration due to Alzheimer’s disease in a Chinese population. BMC Geriatrics 2019; 19: 59
- 17 Sajjadi SA, Sheikh-Bahaei N, Cross J. et al. Can MRI visual assessment differentiate the variants of primary-progressive aphasia?. AJNR Am J Neuroradiol 2017; 38 (05) 954-960
- 18 Du A-T, Schuff N, Kramer JH. et al. Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia. Brain: A J Neurol 2007; 130 (04) 1159-1166
- 19 Harper L, Fumagalli GG, Barkhof F. et al. MRI visual rating scales in the diagnosis of dementia: evaluation in 184 post-mortem confirmed cases. Brain 2016; 139 (04) 1211-1225
- 20 Düzel E, Costagli M, Donatelli G. et al. Studying Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis with 7-T magnetic resonance. European Radiology Experimental 2021; 5: 36
- 21 Perera Molligoda Arachchige AS, Garner AK. Seven Tesla MRI in Alzheimer’s disease research: State of the art and future directions: A narrative review. AIMS Neurosci 2023; 10 (04) 401-422
- 22 Chen Y, Wang Y, Song Z. et al. Abnormal white matter changes in Alzheimer’s disease based on diffusion tensor imaging: A systematic review. Ageing Res Rev 2023; 87: 101911-101911
- 23 Alsop DC, Detre JA, Golay X. et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 2015; 73 (01) 102-116
- 24 Molinder A, Ziegelitz D, Maier SE. et al. Validity and reliability of the medial temporal lobe atrophy scale in a memory clinic population. BMC Neurol 2021; 21 (01) 289
- 25 Kaushik S, Vani K, Chumber S. et al. Evaluation of MR Visual Rating Scales in Major Forms of Dementia. J Neurosci Rural Pract 2021; 12 (01) 16-23
- 26 Enkirch SJ, Traschütz A, Müller A. et al. The ERICA Score: An MR Imaging–based Visual Scoring System for the Assessment of Entorhinal Cortex Atrophy in Alzheimer Disease. Radiology 2018; 288 (01) 226-233
- 27 Haller S, Jäger HR, Vernooij MW. et al. Neuroimaging in Dementia: More than Typical Alzheimer Disease. Radiology 2023; 308 (03) e230173
- 28 Koedam ELGE, Lehmann M, van der Flier WM. et al. Visual assessment of posterior atrophy development of a MRI rating scale. Eur Radiol 2011; 21 (12) 2618-2625
- 29 Ossenkoppele R, Pijnenburg YAL, Perry DC. et al. The behavioural/dysexecutive variant of Alzheimer’s disease: Clinical, neuroimaging and pathological features Brain. 2015; 138: 2732-2749
- 30 Snowden JS. Changing perspectives on frontotemporal dementia: A review. J Neuropsychol 2023; 17: 211-234
- 31 Grossman M. Frontotemporal dementia: A review. J Int Neuropsychol Soc 2002; 8: 566-583
- 32 Furtner J, Prayer D. Neuroimaging in dementia. Wiener Medizinische Wochenschrift 2021; 171: 274-281
- 33 Kim KW, MacFall JR, Payne ME. Classification of white matter lesions on magnetic resonance imaging in elderly persons. Biol Psychiatry 2008; 64 (04) 273-280
- 34 Kantarci K, Ferman TJ, Boeve BF. et al. Focal atrophy on MRI and neuropathologic classification of dementia with Lewy bodies. Neurology 2012; 79 (06) 553-560
- 35 Shams S, Fällmar D, Schwarz S. et al. MRI of the Swallow Tail Sign: A Useful Marker in the Diagnosis of Lewy Body Dementia?. AJNR Am J Neuroradiol 2017; 38 (09) 1737-1741
- 36 McKeith IG, Boeve BF, Dickson DW. et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology 2017; 89 (01) 88-100
- 37 Broski SM, Hunt CH, Johnson GB. et al. Structural and Functional Imaging in Parkinsonian Syndromes. RadioGraphics 2014; 34: 1273-1292
- 38 Hampel H, Elhage A, Cho M. et al. Amyloid-related imaging abnormalities (ARIA): radiological, biological and clinical characteristics. BRAIN 2023; 146: 4414-4424
- 39 Roytman M, Mashriqi F, Al-Tawil K. et al. Amyloid-Related Imaging Abnormalities: An Update. AJR Am J Roentgenol 2023; 220 (04) 562-574
- 40 Battineni G, Chintalapudi N, Hossain MA. et al. Artificial Intelligence Models in the Diagnosis of Adult-Onset Dementia Disorders A Review. Bioengineering 2022; 9 (08) 370
- 41 Scheltens P, Leys D, Barkhof F. et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 1992; 55: 967-972
- 42 Westman E, Cavallin L, Muehlboeck JS. et al. Sensitivity and specificity of medial temporal lobe visual ratings and multivariate regional MRI Classification in Alzheimer’s Disease. PLoS One 2011; 6 (07) e22506