RSS-Feed abonnieren
DOI: 10.1055/a-2553-1392
Clinical Benefit of Structured Reporting Using the Liver Imaging Reporting and Data System (LI-RADS) in MRI in Patients at Risk for Hepatocellular Carcinoma
Klinischer Nutzen der strukturierten Befundung mittels des Liver Imaging Reporting and Data System (LI-RADS) in der MRT bei Patienten mit erhöhtem Risiko für ein hepatozelluläres Karzinom Gefördert durch: Deutsche Krebshilfe 70114316Gefördert durch: radCIO RA-1-1-014

Abstract
Purpose
The aim of this study was to evaluate the quality of structured reporting of MRI examinations in patients at risk for HCC using the Liver Imaging Reporting and Data System (LI-RADS) created during the daily clinical routine.
Materials and Methods
In this retrospective study, MRI examinations of 163 patients under HCC surveillance and HCC follow-up were analyzed. The study cohort included a group of 76 patients whose examinations were performed using free-text reporting and a group of 87 patients with structured template reporting based on the LI-RADS criteria. The diagnostic accuracy of the specified LI-RADS category was analyzed for both groups. The impact of structured reporting and the frequency of reporting of the major and ancillary LI-RADS features in free-text reports and structured reports were compared using the χ²-test.
Results
Liver lesions were classified according to LI-RADS significantly more often in the structured reports (91.4%) than in the unstructured free-text reports (82.6%) (p < 0.01). Most relevant major LI-RADS criteria were described significantly more frequently when using the structured report template compared to free text, e.g., arterial hyperenhancement 100% vs. 92.5% (p < 0.01) and washout 93.4% vs. 79.7% (p < 0.01). Only the documentation of threshold growth was not significantly improved, but absolute lesion size was reported significantly more often within the structured reports. The diagnostic accuracy of the LI-RADS category was higher for the structured reports than for the free-text reports (82.3% vs. 63.9%).
Conclusion
Structured reporting improves LI-RADS documentation in MRI reports of patients at risk for HCC and may help with multidisciplinary communication and patient management.
Key Points
-
Structured reporting showed improved documentation of key features for LI-RADS classification compared to nonstructured MRI reports.
-
Structured reports improve the categorization of liver lesions according to LI-RADS in patients at risk for HCC.
Citation Format
-
Nelles C, Wagner A, Lennartz S et al. Clinical Benefit of Structured Reporting Using the Liver Imaging Reporting and Data System (LI-RADS) in MRI in Patients at Risk for Hepatocellular Carcinoma. Rofo 2025; DOI 10.1055/a-2553-1392
Zusammenfassung
Ziel
Ziel dieser Studie war es, die Qualität der strukturierten Befundung in der klinischen Routine von MRT-Untersuchungen bei Patienten mit Risiko für ein hepatozelluläres Karzinom (HCC) unter Verwendung des Liver Imaging Reporting and Data System (LI-RADS) zu bewerten.
Material und Methoden
In dieser retrospektiven Studie wurden MRT-Untersuchungen von 163 Patienten in der HCC-Überwachung und der HCC-Nachbeobachtung analysiert. Die Studienkohorte umfasste eine Gruppe von 76 Patienten, deren Untersuchungen mit Freitextbefunden beurteilt wurden, und eine Gruppe von 87 Patienten, deren Untersuchungen mit strukturierten Befundvorlagen auf der Grundlage der LI-RADS-Kriterien bewertet wurden. Die diagnostische Genauigkeit der angegebenen LI-RADS-Kategorie wurde für beide Gruppen berechnet. Die Auswirkungen der strukturierten Befundung und die Häufigkeit der Angabe der Haupt- und Nebenmerkmale der LI-RADS-Kriterien in Freitextbefunden und strukturierten Befunden wurden mithilfe des χ²-Tests verglichen.
Ergebnisse
Die Klassifizierung von Leberläsionen nach LI-RADS wurde in strukturierten Befunden mit 91,4% signifikant häufiger vorgenommen als in Freitextbefunden mit 82,6% (p<0,01). Die meisten relevanten LI-RADS-Hauptkriterien wurden bei Verwendung der strukturierten Befundvorlage signifikant häufiger beschrieben als in Freitextbefunden, z.B. arterielles Hyperenhancement (100% gegenüber 92,5%, p<0,01) und Wash-Out (93,4% gegenüber 79,7%, p<0,01). Lediglich die Dokumentation des Schwellenwachstums wurde nicht signifikant verbessert, jedoch wurde die absolute Größe der Läsionen signifikant häufiger in den strukturierten Befunden angegeben. Die diagnostische Genauigkeit war bei den strukturierten Befunden höher als bei den Freitextbefunden (82,3% vs. 63,9%).
Schlussfolgerung
Eine strukturierte Befundung verbessert die LI-RADS-Dokumentation in MRT-Befunden von Patienten mit Risiko für ein HCC und kann die interdisziplinäre Kommunikation und das Patientenmanagement unterstützen.
Kernaussagen
-
Strukturierte Befundung zeigte eine verbesserte Dokumentation der Hauptmerkmale für die LI-RADS-Klassifizierung im Vergleich zu nicht strukturierten MRT-Freitextbefunden.
-
Strukturierte Befunde verbessern die Kategorisierung von Leberläsionen gemäß LI-RADS bei Patienten mit Risiko für ein HCC.
Keywords
structured reporting - oncology - hepatocellular cancer (HCC) - Liver Imaging Reporting and Data System (LI-RADS)Publikationsverlauf
Eingereicht: 26. Oktober 2024
Angenommen nach Revision: 28. Februar 2025
Artikel online veröffentlicht:
25. April 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Bray F, Ferlay J, Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394-424
- 2 European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol 2018; 69: 182-236
- 3 Kim DH, Choi SH, Shim JH. et al. Magnetic Resonance Imaging for Surveillance of Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Diagnostics 2021; 11: 1665
- 4 Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF). German S3 Guideline for the management of hepatocellular cancer, AWMF-Registernummer: 032–053OL (August 2023). Zugriff am 26. Januar 2024 unter: https://www.leitlinienprogramm-onkologie.de/leitlinien/hcc-und-biliaere-karzinome/
- 5 Chernyak V, Fowler KJ, Kamaya A. et al. Liver Imaging Reporting and Data System (LI-RADS) Version 2018: Imaging of Hepatocellular Carcinoma in At-Risk Patients. Radiology 2018; 289: 816-830
- 6 Pinto Dos Santos D, Hempel JM, Mildenberger P. et al. Structured Reporting in Clinical Routine. Rofo 2019; 191: 33-39
- 7 Flusberg M, Ganeles J, Ekinci T. et al. Impact of a Structured Report Template on the Quality of CT and MRI Reports for Hepatocellular Carcinoma Diagnosis. J Am Coll Radiol 2017; 14: 1206-1211
- 8 Marcal LP, Fox PS, Evans DB. et al. Analysis of free-form radiology dictations for completeness and clarity for pancreatic cancer staging. Abdom Imaging 2015; 40: 2391-2397
- 9 Rosenkrantz AB, Pujara AC, Taneja SS. Use of a Quality Improvement Initiative to Achieve Consistent Reporting of Level of Suspicion for Tumor on Multiparametric Prostate MRI. AJR Am J Roentgenol 2016; 206: 1040-1044
- 10 Brook OR, Brook A, Vollmer CM. et al. Structured reporting of multiphasic CT for pancreatic cancer: potential effect on staging and surgical planning. Radiology 2015; 274: 464-472
- 11 Faggioni L, Coppola F, Ferrari R. et al. Usage of structured reporting in radiological practice: results from an Italian online survey. Eur Radiol 2017; 27: 1934-1943
- 12 Kotter E, Pinto dos Santos D. Strukturierte Befundung in der Radiologie. Radiologe 2021; 61: 979-985
- 13 European Society of Radiology (ESR). ESR paper on structured reporting in radiology. Insights Imaging 2018; 9: 1-7
- 14 Campbell I. Chi-squared and Fisher-Irwin tests of two-by-two tables with small sample recommendations. Stat Med 2007; 26: 3661-3675
- 15 Richardson JTE. The analysis of 2 × 2 contingency tables--yet again. Stat Med 2011; 30: 890
- 16 van der Pol CB, McInnes MDF, Salameh JP. et al. CT/MRI and CEUS LI-RADS Major Features Association with Hepatocellular Carcinoma: Individual Patient Data Meta-Analysis. Radiology 2022; 302: 326-335
- 17 Sahni VA, Silveira PC, Sainani NI. et al. Impact of a Structured Report Template on the Quality of MRI Reports for Rectal Cancer Staging. AJR Am J Roentgenol 2015; 205: 584-588
- 18 Nörenberg D, Sommer WH, Thasler W. et al. Structured Reporting of Rectal Magnetic Resonance Imaging in Suspected Primary Rectal Cancer: Potential Benefits for Surgical Planning and Interdisciplinary Communication. Invest Radiol 2017; 52: 232-239
- 19 Marcovici PA, Taylor GA. Journal Club: Structured radiology reports are more complete and more effective than unstructured reports. AJR Am J Roentgenol 2014; 203: 1265-1271
- 20 Bosmans JML, Neri E, Ratib O. et al. Structured reporting: a fusion reactor hungry for fuel. Insights Imaging 2015; 6: 129-132
- 21 Schwartz LH, Panicek DM, Berk AR. et al. Improving communication of diagnostic radiology findings through structured reporting. Radiology 2011; 260: 174-181
- 22 Baeßler B, Maintz D, Persigehl T. Imaging Procedures for Colorectal Cancer. Visc Med 2016; 32: 166-171
- 23 Dimarco M, Cannella R, Pellegrino S. et al. Impact of structured report on the quality of preoperative CT staging of pancreatic ductal adenocarcinoma: assessment of intra- and inter-reader variability. Abdom Radiol (NY) 2020; 45: 437-448
- 24 Spînu-Popa EV, Cioni D, Neri E. Radiology reporting in oncology—oncologists’ perspective. Cancer Imaging 2021; 21: 63
- 25 Singh R, Wilson MP, Manolea F. et al. Diagnostic accuracy and inter-reader reliability of the MRI Liver Imaging Reporting and Data System (version 2018) risk stratification and management system. SA J Radiol 2022; 26: 2386
- 26 Fraum TJ, Tsai R, Rohe E. et al. Differentiation of Hepatocellular Carcinoma from Other Hepatic Malignancies in Patients at Risk: Diagnostic Performance of the Liver Imaging Reporting and Data System Version 2014. Radiology 2018; 286: 158-172
- 27 Cerny M, Bergeron C, Billiard JS. et al. LI-RADS for MR Imaging Diagnosis of Hepatocellular Carcinoma: Performance of Major and Ancillary Features. Radiology 2018; 288: 118-128
- 28 Liu W, Qin J, Guo R. et al. Accuracy of the diagnostic evaluation of hepatocellular carcinoma with LI-RADS. Acta Radiol 2018; 59: 140-146
- 29 Liang Y, Xu F, Guo Y. et al. Diagnostic performance of LI-RADS for MRI and CT detection of HCC: A systematic review and diagnostic meta-analysis. Eur J Radiol 2021; 134
- 30 van der Pol CB, Lim CS, Sirlin CB. et al. Accuracy of the Liver Imaging Reporting and Data System in Computed Tomography and Magnetic Resonance Image Analysis of Hepatocellular Carcinoma or Overall Malignancy-A Systematic Review. Gastroenterology 2019; 156: 976-986
- 31 Kierans AS, Song C, Gavlin A. et al. Diagnostic Performance of LI-RADS Version 2018, LI-RADS Version 2017, and OPTN Criteria for Hepatocellular Carcinoma. AJR Am J Roentgenol 2020; 215: 1085-1092
- 32 Kabadi SJ, Krishnaraj A. Strategies for Improving the Value of the Radiology Report: A Retrospective Analysis of Errors in Formally Over-read Studies. J Am Coll Radiol 2017; 14: 459-466
- 33 Shenoy-Bhangle AS, Tsai LL, Masciocchi M. et al. Role of the radiologist at HCC multidisciplinary conference and use of the LR-TR algorithm for improving workflow. Abdom Radiol (NY) 2021; 46: 3558-3564
- 34 Poullos PD, Tseng JJ, Melcher ML. et al. Structured Reporting of Multiphasic CT for Hepatocellular Carcinoma: Effect on Staging and Suitability for Transplant. AJR Am J Roentgenol 2018; 210: 766-774
- 35 Reig M, Forner A, Rimola J. et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J Hepatol 2022; 76: 681-693
- 36 Nelles C, Ristow I, Juchems M. et al. Standardized Reporting of HCC with LI-RADS and mRECIST: Update on the Situation in Germany. Rofo 2024;