RSS-Feed abonnieren

DOI: 10.1055/a-2551-3320
Alcohol-Metabolizing Enzymes, Liver Diseases and Cancer
Autoren
Funding This work was sponsored by the National Natural Science Foundation of China (No. U24A20654; 82170602), the National Key Research and Development Program of China (No. 2024YFE0213800), the Project for Middle-aged and Young Excellent Technological Innovation Talents of Jilin Province (20220508079RC), the Natural Science Foundation for self-exploration research of Jilin Province (YDZJ202401427ZYTS), Jilin Provincial Key Laboratory of Metabolic Liver Diseases (YDZJ202502CXJD002).

Abstract
Alcohol is generally believed to be metabolized in the liver by alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and to a much lesser extent cytochrome P450 2E1 (CYP2E1) and other enzymes. Recent studies suggest that gut also play important roles in the promotion of alcohol metabolism. ADH, ALDH, and CYP2E1 have several polymorphisms that markedly impact alcohol metabolism. These alcohol-metabolizing enzymes not only affect alcohol-associated liver disease (ALD), but may also modulate the pathogenesis of other liver diseases and cancer in the absence of alcohol consumption. In this review, we discuss alcohol metabolism and the roles of alcohol-metabolizing enzymes in the pathogenesis of ALD, metabolic dysfunction–associated steatotic liver disease, metabolic dysfunction and alcohol–associated liver disease, viral hepatitis, and liver cancer. We also discuss how alcohol-metabolizing enzymes may affect endogenous ethanol production, and how ethanol metabolism in the gut affects liver disease and cancer. Directions for future research on the roles of alcohol-metabolizing enzymes in liver disease and cancer are also elaborated.
Publikationsverlauf
Artikel online veröffentlicht:
29. März 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Global status report on alcohol and health and treatment of substance use disorders. Geneva: World Health Organization; 2024. ; Licence: CC BY-NC-SA 3.0 IGO
- 2 Jiang Y, Zhang T, Kusumanchi P, Han S, Yang Z, Liangpunsakul S. Alcohol metabolizing enzymes, microsomal ethanol oxidizing system, cytochrome P450 2E1, catalase, and aldehyde dehydrogenase in alcohol-associated liver disease. Biomedicines 2020; 8 (03) 8
- 3 Guillot A, Ren T, Jourdan T. et al. Targeting liver aldehyde dehydrogenase-2 prevents heavy but not moderate alcohol drinking. Proc Natl Acad Sci U S A 2019; 116 (51) 25974-25981
- 4 Mackowiak B, Fu Y, Maccioni L, Gao B. Alcohol-associated liver disease. J Clin Invest 2024; 134 (03) 134
- 5 Boffetta P, Hashibe M. Alcohol and cancer. Lancet Oncol 2006; 7 (02) 149-156
- 6 Paton A. Alcohol in the body. BMJ 2005; 330 (7482) 85-87
- 7 Cederbaum AI. Alcohol metabolism. Clin Liver Dis 2012; 16 (04) 667-685
- 8 Beck IT, Paloschi GB, Dinda PK, Beck M. Effect of intragastric administration of alcohol on the ethanol concentrations and osmolality of pancreatic juice, bile, and portal and peripheral blood. Gastroenterology 1974; 67 (03) 484-489
- 9 Fu Y, Mackowiak B, Lin YH. et al. Coordinated action of a gut-liver pathway drives alcohol detoxification and consumption. Nat Metab 2024; 6 (07) 1380-1396
- 10 Maccioni L, Fu Y, Horsmans Y. et al. Alcohol-associated bowel disease: new insights into pathogenesis. eGastroenterology 2023; 1 (01) 1
- 11 Zakhari S. Overview: how is alcohol metabolized by the body?. Alcohol Res Health 2006; 29 (04) 245-254
- 12 Heier C, Xie H, Zimmermann R. Nonoxidative ethanol metabolism in humans—from biomarkers to bioactive lipids. IUBMB Life 2016; 68 (12) 916-923
- 13 Tuma DJ, Casey CA. Dangerous byproducts of alcohol breakdown—focus on adducts. Alcohol Res Health 2003; 27 (04) 285-290
- 14 Yu HS, Oyama T, Isse T. et al. Formation of acetaldehyde-derived DNA adducts due to alcohol exposure. Chem Biol Interact 2010; 188 (03) 367-375
- 15 Niemelä O, Parkkila S, Pasanen M, Iimuro Y, Bradford B, Thurman RG. Early alcoholic liver injury: formation of protein adducts with acetaldehyde and lipid peroxidation products, and expression of CYP2E1 and CYP3A. Alcohol Clin Exp Res 1998; 22 (09) 2118-2124
- 16 Wu D, Cederbaum AI. Alcohol, oxidative stress, and free radical damage. Alcohol Res Health 2003; 27 (04) 277-284
- 17 Park SH, Seo W, Xu MJ. et al. Ethanol and its nonoxidative metabolites promote acute liver injury by inducing ER stress, adipocyte death, and lipolysis. Cell Mol Gastroenterol Hepatol 2023; 15 (02) 281-306
- 18 Yan C, Hu W, Tu J, Li J, Liang Q, Han S. Pathogenic mechanisms and regulatory factors involved in alcoholic liver disease. J Transl Med 2023; 21 (01) 300
- 19 Jophlin LL, Singal AK, Bataller R. et al. ACG clinical guideline: alcohol-associated liver disease. Am J Gastroenterol 2024; 119 (01) 30-54
- 20 Lehner T, Gao B, Mackowiak B. Alcohol metabolism in alcohol use disorder: a potential therapeutic target. Alcohol Alcohol 2024; 59 (01) 59
- 21 Tsermpini EE, Plemenitaš Ilješ A, Dolžan V. Alcohol-induced oxidative stress and the role of antioxidants in alcohol use disorder: a systematic review. Antioxidants 2022; 11 (07) 11
- 22 Estonius M, Svensson S, Höög JO. Alcohol dehydrogenase in human tissues: localisation of transcripts coding for five classes of the enzyme. FEBS Lett 1996; 397 (2-3): 338-342
- 23 Thomasson HR, Beard JD, Li TK. ADH2 gene polymorphisms are determinants of alcohol pharmacokinetics. Alcohol Clin Exp Res 1995; 19 (06) 1494-1499
- 24 Edenberg HJ. The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res Health 2007; 30 (01) 5-13
- 25 Svensson S, Some M, Lundsjö A, Helander A, Cronholm T, Höög JO. Activities of human alcohol dehydrogenases in the metabolic pathways of ethanol and serotonin. Eur J Biochem 1999; 262 (02) 324-329
- 26 Edenberg HJ, McClintick JN. Alcohol dehydrogenases, aldehyde dehydrogenases, and alcohol use disorders: a critical review. Alcohol Clin Exp Res 2018; 42 (12) 2281-2297
- 27 Dohmen K, Baraona E, Ishibashi H. et al. Ethnic differences in gastric sigma-alcohol dehydrogenase activity and ethanol first-pass metabolism. Alcohol Clin Exp Res 1996; 20 (09) 1569-1576
- 28 Jackson B, Brocker C, Thompson DC. et al. Update on the aldehyde dehydrogenase gene (ALDH) superfamily. Hum Genomics 2011; 5 (04) 283-303
- 29 Vasiliou V, Thompson DC, Smith C, Fujita M, Chen Y. Aldehyde dehydrogenases: from eye crystallins to metabolic disease and cancer stem cells. Chem Biol Interact 2013; 202 (1-3): 2-10
- 30 Stagos D, Chen Y, Brocker C. et al. Aldehyde dehydrogenase 1B1: molecular cloning and characterization of a novel mitochondrial acetaldehyde-metabolizing enzyme. Drug Metab Dispos 2010; 38 (10) 1679-1687
- 31 Ward RJ, McPherson AJ, Chow C. et al. Identification and characterisation of alcohol-induced flushing in Caucasian subjects. Alcohol Alcohol 1994; 29 (04) 433-438
- 32 Fagerberg L, Hallström BM, Oksvold P. et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 2014; 13 (02) 397-406
- 33 Chen CH, Ferreira JC, Gross ER, Mochly-Rosen D. Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol Rev 2014; 94 (01) 1-34
- 34 Gross ER, Zambelli VO, Small BA, Ferreira JC, Chen CH, Mochly-Rosen D. A personalized medicine approach for Asian Americans with the aldehyde dehydrogenase 2*2 variant. Annu Rev Pharmacol Toxicol 2015; 55: 107-127
- 35 Wang Q, Chang B, Li X, Zou Z. Role of ALDH2 in hepatic disorders: gene polymorphism and disease pathogenesis. J Clin Transl Hepatol 2021; 9 (01) 90-98
- 36 Wang W, Wang C, Xu H, Gao Y. Aldehyde dehydrogenase, liver disease and cancer. Int J Biol Sci 2020; 16 (06) 921-934
- 37 Lieber CS, DeCarli LM. Ethanol oxidation by hepatic microsomes: adaptive increase after ethanol feeding. Science 1968; 162 (3856) 917-918
- 38 Quertemont E. Genetic polymorphism in ethanol metabolism: acetaldehyde contribution to alcohol abuse and alcoholism. Mol Psychiatry 2004; 9 (06) 570-581
- 39 Massart J, Begriche K, Hartman JH, Fromenty B. Role of mitochondrial cytochrome P450 2E1 in healthy and diseased liver. Cells 2022; 11 (02) 11
- 40 Takahashi T, Lasker JM, Rosman AS, Lieber CS. Induction of cytochrome P-4502E1 in the human liver by ethanol is caused by a corresponding increase in encoding messenger RNA. Hepatology 1993; 17 (02) 236-245
- 41 Wang Y, Yu D, Tolleson WH. et al. A systematic evaluation of microRNAs in regulating human hepatic CYP2E1. Biochem Pharmacol 2017; 138: 174-184
- 42 Jang GR, Harris RZ. Drug interactions involving ethanol and alcoholic beverages. Expert Opin Drug Metab Toxicol 2007; 3 (05) 719-731
- 43 Glorieux C, Buc Calderon P. Targeting catalase in cancer. Redox Biol 2024; 77: 103404
- 44 Contreras-Zentella ML, Villalobos-García D, Hernández-Muñoz R. Ethanol metabolism in the liver, the induction of oxidant stress, and the antioxidant defense system. Antioxidants 2022; 11 (07) 11
- 45 Jamal M, Ameno K, Uekita I, Kumihashi M, Wang W, Ijiri I. Catalase mediates acetaldehyde formation in the striatum of free-moving rats. Neurotoxicology 2007; 28 (06) 1245-1248
- 46 Zimatkin SM, Pronko SP, Vasiliou V, Gonzalez FJ, Deitrich RA. Enzymatic mechanisms of ethanol oxidation in the brain. Alcohol Clin Exp Res 2006; 30 (09) 1500-1505
- 47 Tripathi A, Debelius J, Brenner DA. et al. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 2018; 15 (07) 397-411
- 48 Pabst O, Hornef MW, Schaap FG, Cerovic V, Clavel T, Bruns T. Gut-liver axis: barriers and functional circuits. Nat Rev Gastroenterol Hepatol 2023; 20 (07) 447-461
- 49 Hartmann P, Chen P, Wang HJ. et al. Deficiency of intestinal mucin-2 ameliorates experimental alcoholic liver disease in mice. Hepatology 2013; 58 (01) 108-119
- 50 Yan AW, Fouts DE, Brandl J. et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 2011; 53 (01) 96-105
- 51 Diaz LA, Winder GS, Leggio L, Bajaj JS, Bataller R, Arab JP. New insights into the molecular basis of alcohol abstinence and relapse in alcohol-associated liver disease. Hepatology 2023
- 52 Díaz LA, Arab JP, Louvet A, Bataller R, Arrese M. The intersection between alcohol-related liver disease and nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2023; 20 (12) 764-783
- 53 Yuan J, Chen C, Cui J. et al. Fatty liver disease caused by high-alcohol-producing Klebsiella pneumoniae. Cell Metab 2019; 30 (04) 675-688.e7
- 54 Im PK, Millwood IY, Kartsonaki C. et al; China Kadoorie Biobank (CKB) Collaborative Group. Alcohol drinking and risks of total and site-specific cancers in China: A 10-year prospective study of 0.5 million adults. Int J Cancer 2021; 149 (03) 522-534
- 55 Piovani D, Nikolopoulos GK, Aghemo A. et al. Environmental risk factors for gallbladder cancer: field-wide systematic review and meta-analysis. Clin Gastroenterol Hepatol 2024;S1542-3565(24)00866-8
- 56 Chang JS, Hsiao JR, Chen CH. ALDH2 polymorphism and alcohol-related cancers in Asians: a public health perspective. J Biomed Sci 2017; 24 (01) 19
- 57 Choi CK, Shin MH, Cho SH. et al. Association between ALDH2 and ADH1B polymorphisms and the risk for colorectal cancer in Koreans. Cancer Res Treat 2021; 53 (03) 754-762
- 58 Im PK, Yang L, Kartsonaki C. et al; China Kadoorie Biobank (CKB) Collaborative Group. Alcohol metabolism genes and risks of site-specific cancers in Chinese adults: an 11-year prospective study. Int J Cancer 2022; 150 (10) 1627-1639
- 59 Seitz HK, Simanowski UA, Garzon FT. et al. Possible role of acetaldehyde in ethanol-related rectal cocarcinogenesis in the rat. Gastroenterology 1990; 98 (02) 406-413
- 60 Martino C, Zaramela LS, Gao B. et al. Acetate reprograms gut microbiota during alcohol consumption. Nat Commun 2022; 13 (01) 4630
- 61 Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E, Kamath PS. Global burden of liver disease: 2023 update. J Hepatol 2023; 79 (02) 516-537
- 62 Younossi ZM, Wong G, Anstee QM, Henry L. The global burden of liver disease. Clin Gastroenterol Hepatol 2023; 21 (08) 1978-1991
- 63 Xu H, Xiao P, Zhang F, Liu T, Gao Y. Epidemic characteristics of alcohol-related liver disease in Asia from 2000 to 2020: a systematic review and meta-analysis. Liver Int 2022; 42 (09) 1991-1998
- 64 Plemenitas A, Kastelic M, Porcelli S. et al. Genetic variability in CYP2E1 and catalase gene among currently and formerly alcohol-dependent male subjects. Alcohol Alcohol 2015; 50 (02) 140-145
- 65 Jonas W, Schürmann A. Genetic and epigenetic factors determining NAFLD risk. Mol Metab 2021; 50: 101111
- 66 Yokoyama A, Taniki N, Hara S. et al. Slow-metabolizing ADH1B and inactive heterozygous ALDH2 increase vulnerability to fatty liver in Japanese men with alcohol dependence. J Gastroenterol 2018; 53 (05) 660-669
- 67 Vidal F, Lorenzo A, Auguet T. et al. Genetic polymorphisms of ADH2, ADH3, CYP4502E1 Dra-I and Pst-I, and ALDH2 in Spanish men: lack of association with alcoholism and alcoholic liver disease. J Hepatol 2004; 41 (05) 744-750
- 68 Chao YC, Young TH, Tang HS, Hsu CT. Alcoholism and alcoholic organ damage and genetic polymorphisms of alcohol metabolizing enzymes in Chinese patients. Hepatology 1997; 25 (01) 112-117
- 69 Tanaka F, Shiratori Y, Yokosuka O, Imazeki F, Tsukada Y, Omata M. High incidence of ADH2*1/ALDH2*1 genes among Japanese alcohol dependents and patients with alcoholic liver disease. Hepatology 1996; 23 (02) 234-239
- 70 Das PP, Jyoti Kalita M, Jyoti Talukdar A. et al. Evaluation and analysis of novel germline variants in ethanol metabolism pathway genes predisposition to liver disease. Gene 2023; 873: 147451
- 71 Cheng Q, Li C, Yang CF. et al. Methyl ferulic acid attenuates liver fibrosis and hepatic stellate cell activation through the TGF-β1/Smad and NOX4/ROS pathways. Chem Biol Interact 2019; 299: 131-139
- 72 Salete-Granado D, Carbonell C, Puertas-Miranda D. et al. Autophagy, oxidative stress, and alcoholic liver disease: a systematic review and potential clinical applications. Antioxidants 2023; 12 (07) 12
- 73 Liu Y, Liu T, Zhang F, Gao Y. Unraveling the complex interplay between epigenetics and immunity in alcohol-associated liver disease: a comprehensive review . Int J Biol Sci 2023; 19 (15) 4811-4830
- 74 Haseba T, Maruyama M, Akimoto T, Yamamoto I, Katsuyama M, Okuda T. Class III alcohol dehydrogenase plays a key role in the onset of alcohol-related/-associated liver disease as an S-nitrosoglutathione reductase in mice. Int J Mol Sci 2023; 24 (15) 24
- 75 Kwon HJ, Won YS, Park O. et al. Aldehyde dehydrogenase 2 deficiency ameliorates alcoholic fatty liver but worsens liver inflammation and fibrosis in mice. Hepatology 2014; 60 (01) 146-157
- 76 Guo R, Zhong L, Ren J. Overexpression of aldehyde dehydrogenase-2 attenuates chronic alcohol exposure-induced apoptosis, change in Akt and Pim signalling in liver. Clin Exp Pharmacol Physiol 2009; 36 (5-6): 463-468
- 77 Morel C, Chowdhary V, Thevkar Nagesh P. et al. Altered ethanol metabolism and increased oxidative stress enhance alcohol-associated liver injury in farnesoid X receptor-deficient mice. Liver Int 2023; 43 (01) 100-114
- 78 Wang Y, Chen Q, Wu S. et al. Amelioration of ethanol-induced oxidative stress and alcoholic liver disease by in vivo RNAi targeting Cyp2e1 . Acta Pharm Sin B 2023; 13 (09) 3906-3918
- 79 Chen S, Yi J, Kang Q, Song M, Raubenheimer D, Lu J. Identification of a novel peptide with alcohol dehydrogenase activating ability from ethanol-induced Lactococcus lactis: a combined in silico prediction and in vivo validation. J Agric Food Chem 2024; 72 (11) 5746-5756
- 80 Zan R, Zhu L, Wu G, Zhang H. Identification of novel peptides with alcohol dehydrogenase (ADH) activating ability in chickpea protein hydrolysates. Foods 2023; 12 (08) 12
- 81 Zhou C, Lai Y, Huang P. et al. Naringin attenuates alcoholic liver injury by reducing lipid accumulation and oxidative stress. Life Sci 2019; 216: 305-312
- 82 Liu YS, Yuan MH, Zhang CY. et al. Puerariae Lobatae radix flavonoids and puerarin alleviate alcoholic liver injury in zebrafish by regulating alcohol and lipid metabolism. Biomed Pharmacother 2021; 134: 111121
- 83 Hao L, Sun Q, Zhong W, Zhang W, Sun X, Zhou Z. Mitochondria-targeted ubiquinone (MitoQ) enhances acetaldehyde clearance by reversing alcohol-induced posttranslational modification of aldehyde dehydrogenase 2: a molecular mechanism of protection against alcoholic liver disease. Redox Biol 2018; 14: 626-636
- 84 Zhong W, Zhang W, Li Q. et al. Pharmacological activation of aldehyde dehydrogenase 2 by Alda-1 reverses alcohol-induced hepatic steatosis and cell death in mice. J Hepatol 2015; 62 (06) 1375-1381
- 85 Dollé L, Gao B. Pharmacological chaperone therapies: can aldehyde dehydrogenase activator make us healthier?. J Hepatol 2015; 62 (06) 1228-1230
- 86 Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C, Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology 2023; 77 (04) 1335-1347
- 87 Lieber CS. The discovery of the microsomal ethanol oxidizing system and its physiologic and pathologic role. Drug Metab Rev 2004; 36 (3-4): 511-529
- 88 El-Khateeb E, Achour B, Al-Majdoub ZM, Barber J, Rostami-Hodjegan A. Non-uniformity of changes in drug-metabolizing enzymes and transporters in liver cirrhosis: implications for drug dosage adjustment. Mol Pharm 2021; 18 (09) 3563-3577
- 89 Fisher CD, Lickteig AJ, Augustine LM. et al. Hepatic cytochrome P450 enzyme alterations in humans with progressive stages of nonalcoholic fatty liver disease. Drug Metab Dispos 2009; 37 (10) 2087-2094
- 90 Zhu R, Baker SS, Moylan CA. et al. Systematic transcriptome analysis reveals elevated expression of alcohol-metabolizing genes in NAFLD livers. J Pathol 2016; 238 (04) 531-542
- 91 Baker SS, Baker RD, Liu W, Nowak NJ, Zhu L. Role of alcohol metabolism in non-alcoholic steatohepatitis. PLoS One 2010; 5 (03) e9570
- 92 Li H, Toth E, Cherrington NJ. Alcohol metabolism in the progression of human nonalcoholic steatohepatitis. Toxicol Sci 2018; 164 (02) 428-438
- 93 Vilar-Gomez E, Sookoian S, Pirola CJ. et al. ADH1B∗2 is associated with reduced severity of nonalcoholic fatty liver disease in adults, independent of alcohol consumption. Gastroenterology 2020; 159 (03) 929-943
- 94 Cope K, Risby T, Diehl AM. Increased gastrointestinal ethanol production in obese mice: implications for fatty liver disease pathogenesis. Gastroenterology 2000; 119 (05) 1340-1347
- 95 Nair S, Cope K, Risby TH, Diehl AM. Obesity and female gender increase breath ethanol concentration: potential implications for the pathogenesis of nonalcoholic steatohepatitis. Am J Gastroenterol 2001; 96 (04) 1200-1204
- 96 Meijnikman AS, Davids M, Herrema H. et al. Microbiome-derived ethanol in nonalcoholic fatty liver disease. Nat Med 2022; 28 (10) 2100-2106
- 97 Meijnikman AS, Nieuwdorp M, Schnabl B. Endogenous ethanol production in health and disease. Nat Rev Gastroenterol Hepatol 2024; 21 (08) 556-571
- 98 Burger K, Jung F, Staufer K. et al. MASLD is related to impaired alcohol dehydrogenase (ADH) activity and elevated blood ethanol levels: role of TNFα and JNK. Redox Biol 2024; 71: 103121
- 99 Arab JP, Díaz LA, Rehm J. et al. Metabolic dysfunction and alcohol-related liver disease (MetALD): position statement by an expert panel on alcohol-related liver disease. J Hepatol 2024;S0168-8278(24)02728-4
- 100 Kalligeros M, Vassilopoulos A, Vassilopoulos S, Victor DW, Mylonakis E, Noureddin M. Prevalence of steatotic liver disease (MASLD, MetALD, and ALD) in the United States: NHANES 2017-2020. Clin Gastroenterol Hepatol 2024; 22 (06) 1330-1332.e4
- 101 Sripongpun P, Kaewdech A, Udompap P, Kim WR. Characteristics and long-term mortality of individuals with MASLD, MetALD, and ALD, and the utility of SAFE score. JHEP Rep Innov Hepatol 2024; 6 (10) 101127
- 102 Israelsen M, Torp N, Johansen S. et al; GALAXY consortium. Validation of the new nomenclature of steatotic liver disease in patients with a history of excessive alcohol intake: an analysis of data from a prospective cohort study. Lancet Gastroenterol Hepatol 2024; 9 (03) 218-228
- 103 Hart CL, Morrison DS, Batty GD, Mitchell RJ, Davey Smith G. Effect of body mass index and alcohol consumption on liver disease: analysis of data from two prospective cohort studies. BMJ 2010; 340: c1240
- 104 Hayashida H, Matsumoto A, Nanri H, Nishida Y, Takagi Y, Hara M. ALDH2 rs671 variant allele is associated with higher energy intake in middle-aged and elderly Japanese who routinely consume alcohol. Environ Health Prev Med 2023; 28: 29
- 105 Baliunas DO, Taylor BJ, Irving H. et al. Alcohol as a risk factor for type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 2009; 32 (11) 2123-2132
- 106 Seike N, Noda M, Kadowaki T. Alcohol consumption and risk of type 2 diabetes mellitus in Japanese: a systematic review. Asia Pac J Clin Nutr 2008; 17 (04) 545-551
- 107 Spracklen CN, Horikoshi M, Kim YJ. et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature 2020; 582 (7811) 240-245
- 108 Takeno K, Tamura Y, Kakehi S, Kaga H, Kawamori R, Watada H. ALDH2 rs671 is associated with elevated FPG, reduced glucose clearance and hepatic insulin resistance in Japanese men. J Clin Endocrinol Metab 2021; 106 (09) e3573-e3581
- 109 Cecchini M, Filippini T, Whelton PK. et al. Alcohol intake and risk of hypertension: a systematic review and dose-response meta-analysis of nonexperimental cohort studies. Hypertension 2024; 81 (08) 1701-1715
- 110 Zhang WS, Xu L, Schooling CM. et al. Effect of alcohol and aldehyde dehydrogenase gene polymorphisms on alcohol-associated hypertension: the Guangzhou Biobank Cohort Study. Hypertens Res 2013; 36 (08) 741-746
- 111 Sasakabe T, Wakai K, Kawai S. et al. Modification of the associations of alcohol intake with serum low-density lipoprotein cholesterol and triglycerides by ALDH2 and ADH1B polymorphisms in Japanese men. J Epidemiol 2018; 28 (04) 185-193
- 112 Nakamura Y, Amamoto K, Tamaki S. et al. Genetic variation in aldehyde dehydrogenase 2 and the effect of alcohol consumption on cholesterol levels. Atherosclerosis 2002; 164 (01) 171-177
- 113 Wada M, Daimon M, Emi M. et al. Genetic association between aldehyde dehydrogenase 2 (ALDH2) variation and high-density lipoprotein cholesterol (HDL-C) among non-drinkers in two large population samples in Japan. J Atheroscler Thromb 2008; 15 (04) 179-184
- 114 Seo W, Gao Y, He Y. et al. ALDH2 deficiency promotes alcohol-associated liver cancer by activating oncogenic pathways via oxidized DNA-enriched extracellular vesicles. J Hepatol 2019; 71 (05) 1000-1011
- 115 Serfaty L. Clinical implications of concomitant alcohol use, obesity, and viral hepatitis. Gastroenterology 2016; 150 (08) 1718-1722
- 116 Cho NE, Bang BR, Gurung P. et al. Retinoid regulation of antiviral innate immunity in hepatocytes. Hepatology 2016; 63 (06) 1783-1795
- 117 Min BY, Kim NY, Jang ES. et al. Ethanol potentiates hepatitis B virus replication through oxidative stress-dependent and -independent transcriptional activation. Biochem Biophys Res Commun 2013; 431 (01) 92-97
- 118 Otani K, Korenaga M, Beard MR. et al. Hepatitis C virus core protein, cytochrome P450 2E1, and alcohol produce combined mitochondrial injury and cytotoxicity in hepatoma cells. Gastroenterology 2005; 128 (01) 96-107
- 119 Allameh A, Niayesh-Mehr R, Aliarab A, Sebastiani G, Pantopoulos K. Oxidative stress in liver pathophysiology and disease. Antioxidants 2023; 12 (09) 12
- 120 Yang J, Xiong Y, Zhou L, Huang Y, Chen W, Wang B. Soluble E-cadherin is associated with oxidative stress in patients with chronic HBV infection. J Med Virol 2020; 92 (01) 34-44
- 121 Shang D, Wang P, Tang W. et al. Genetic variations of ALDH (rs671) are associated with the persistence of HBV infection among the Chinese Han population. Front Med (Lausanne) 2022; 9: 811639
- 122 Rumgay H, Shield K, Charvat H. et al. Global burden of cancer in 2020 attributable to alcohol consumption: a population-based study. Lancet Oncol 2021; 22 (08) 1071-1080
- 123 [Anonymous] IARC World Cancer Reports. In: Wild CP, Weiderpass E, Stewart BW. eds. World Cancer Report: Cancer Research for Cancer Prevention. Lyon (FR): International Agency for Research on Cancer; 2020
- 124 Antwi SO, Eckel-Passow JE, Diehl ND. et al. Alcohol consumption, variability in alcohol dehydrogenase genes and risk of renal cell carcinoma. Int J Cancer 2018; 142 (04) 747-756
- 125 Fu Y, Maccioni L, Wang XW, Greten TF, Gao B. Alcohol-associated liver cancer. Hepatology 2024; 80 (06) 1462-1479
- 126 Ishteyaque S, Yadav KS, Verma S, Washimkar KR, Mugale MN. CYP2E1 triggered GRP78/ATF6/CHOP signaling axis inhibit apoptosis and promotes progression of hepatocellular carcinoma. Arch Biochem Biophys 2023; 745: 109701
- 127 Lee HS, Yoon JH, Kamimura S, Iwata K, Watanabe H, Kim CY. Lack of association of cytochrome P450 2E1 genetic polymorphisms with the risk of human hepatocellular carcinoma. Int J Cancer 1997; 71 (05) 737-740
- 128 Sheng Y, Huang TR, Zhang ZQ. et al. [Study on the relationship between familial clustering of hepatocellular carcinoma and polymorphism of cytochrome P450 2E1 gene in Zhuang population, Guangxi]. Zhonghua Liu Xing Bing Xue Za Zhi 2009; 30 (02) 151-155
- 129 Kato S, Tajiri T, Matsukura N. et al. Genetic polymorphisms of aldehyde dehydrogenase 2, cytochrome p450 2E1 for liver cancer risk in HCV antibody-positive Japanese patients and the variations of CYP2E1 mRNA expression levels in the liver due to its polymorphism. Scand J Gastroenterol 2003; 38 (08) 886-893
- 130 Yu MW, Gladek-Yarborough A, Chiamprasert S, Santella RM, Liaw YF, Chen CJ. Cytochrome P450 2E1 and glutathione S-transferase M1 polymorphisms and susceptibility to hepatocellular carcinoma. Gastroenterology 1995; 109 (04) 1266-1273
- 131 Chen J, Pan W, Chen Y, Wen L, Tu J, Liu K. Relationship of ALDH2 rs671 and CYP2E1 rs2031920 with hepatocellular carcinoma susceptibility in East Asians: a meta-analysis. World J Surg Oncol 2020; 18 (01) 21
- 132 Catanzaro I, Naselli F, Saverini M, Giacalone A, Montalto G, Caradonna F. Cytochrome P450 2E1 variable number tandem repeat polymorphisms and health risks: a genotype-phenotype study in cancers associated with drinking and/or smoking. Mol Med Rep 2012; 6 (02) 416-420
- 133 Zhu L, Yang X, Feng J. et al. CYP2E1 plays a suppressive role in hepatocellular carcinoma by regulating Wnt/Dvl2/β-catenin signaling. J Transl Med 2022; 20 (01) 194
- 134 Kinoshita M, Miyata M. Underexpression of mRNA in human hepatocellular carcinoma focusing on eight loci. Hepatology 2002; 36 (02) 433-438
- 135 Ho JC, Cheung ST, Leung KL, Ng IO, Fan ST. Decreased expression of cytochrome P450 2E1 is associated with poor prognosis of hepatocellular carcinoma. Int J Cancer 2004; 111 (04) 494-500
- 136 Gao J, Wang Z, Wang GJ. et al. From hepatofibrosis to hepatocarcinogenesis: higher cytochrome P450 2E1 activity is a potential risk factor. Mol Carcinog 2018; 57 (10) 1371-1382
- 137 Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 2013; 13 (01) 11-26
- 138 Shen R, Ke L, Li Q. et al. Abnormal bile acid-microbiota crosstalk promotes the development of hepatocellular carcinoma. Hepatol Int 2022; 16 (02) 396-411
- 139 Hao Z, Liu X, He H. et al. CYP2E1 deficit mediates cholic acid-induced malignant growth in hepatocellular carcinoma cells. Mol Med 2024; 30 (01) 79
- 140 Covolo L, Gelatti U, Talamini R. et al. Alcohol dehydrogenase 3, glutathione S-transferase M1 and T1 polymorphisms, alcohol consumption and hepatocellular carcinoma (Italy). Cancer Causes Control 2005; 16 (07) 831-838
- 141 Sakamoto T, Hara M, Higaki Y. et al. Influence of alcohol consumption and gene polymorphisms of ADH2 and ALDH2 on hepatocellular carcinoma in a Japanese population. Int J Cancer 2006; 118 (06) 1501-1507
- 142 Ding J, Li S, Wu J. et al. Alcohol dehydrogenase-2 and aldehyde dehydrogenase-2 genotypes, alcohol drinking and the risk of primary hepatocellular carcinoma in a Chinese population. Asian Pac J Cancer Prev 2008; 9 (01) 31-35
- 143 Polimanti R, Gelernter J. ADH1B: from alcoholism, natural selection, and cancer to the human phenome. Am J Med Genet B Neuropsychiatr Genet 2018; 177 (02) 113-125
- 144 Homann N, Stickel F, König IR. et al. Alcohol dehydrogenase 1C*1 allele is a genetic marker for alcohol-associated cancer in heavy drinkers. Int J Cancer 2006; 118 (08) 1998-2002
- 145 Chang TG, Yen TT, Wei CY, Hsiao TH, Chen IC. Impacts of ADH1B rs1229984 and ALDH2 rs671 polymorphisms on risks of alcohol-related disorder and cancer. Cancer Med 2023; 12 (01) 747-759
- 146 Jelski W, Zalewski B, Szmitkowski M. Alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) activity in the sera of patients with liver cancer. J Clin Lab Anal 2008; 22 (03) 204-209
- 147 Jelski W, Zalewski B, Szmitkowski M. The activity of class I, II, III, and IV alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in liver cancer. Dig Dis Sci 2008; 53 (09) 2550-2555
- 148 Gao Q, Zhu H, Dong L. et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell 2019; 179 (05) 1240
- 149 Liu X, Li T, Kong D, You H, Kong F, Tang R. Prognostic implications of alcohol dehydrogenases in hepatocellular carcinoma. BMC Cancer 2020; 20 (01) 1204
- 150 Li S, Yang H, Li W. et al. ADH1C inhibits progression of colorectal cancer through the ADH1C/PHGDH /PSAT1/serine metabolic pathway. Acta Pharmacol Sin 2022; 43 (10) 2709-2722
- 151 Wei RR, Zhang MY, Rao HL, Pu HY, Zhang HZ, Wang HY. Identification of ADH4 as a novel and potential prognostic marker in hepatocellular carcinoma. Med Oncol 2012; 29 (04) 2737-2743
- 152 Mathkar PP, Chen X, Sulovari A, Li D. Characterization of hepatitis B virus integrations identified in hepatocellular carcinoma genomes. Viruses 2021; 13 (02) 13
- 153 Li L, Huang YT, Wang LT. et al. ADH4—a potential prognostic marker for hepatocellular carcinoma with possible immune-related implications. BMC Cancer 2024; 24 (01) 927
- 154 Buurman R, Gürlevik E, Schäffer V. et al. Histone deacetylases activate hepatocyte growth factor signaling by repressing microRNA-449 in hepatocellular carcinoma cells. Gastroenterology 2012; 143 (03) 811-820.e15
- 155 Liu Y, Yu J, An X. et al. TSA attenuates the progression of c-Myc-driven hepatocarcinogenesis by pAKT-ADH4 pathway. BMC Cancer 2024; 24 (01) 1049
- 156 Abe H, Aida Y, Seki N. et al. Aldehyde dehydrogenase 2 polymorphism for development to hepatocellular carcinoma in East Asian alcoholic liver cirrhosis. J Gastroenterol Hepatol 2015; 30 (09) 1376-1383
- 157 Tsai MC, Yang SS, Lin CC. et al. Association of heavy alcohol intake and ALDH2 rs671 polymorphism with hepatocellular carcinoma and mortality in patients with hepatitis B virus-related cirrhosis. JAMA Netw Open 2022; 5 (07) e2223511
- 158 Liu J, Yang HI, Lee MH. et al. Alcohol drinking mediates the association between polymorphisms of ADH1B and ALDH2 and hepatitis B-related hepatocellular carcinoma. Cancer Epidemiol Biomarkers Prev 2016; 25 (04) 693-699
- 159 Hou G, Chen L, Liu G. et al. Aldehyde dehydrogenase-2 (ALDH2) opposes hepatocellular carcinoma progression by regulating AMP-activated protein kinase signaling in mice. Hepatology 2017; 65 (05) 1628-1644
- 160 Yang CK, Wang XK, Liao XW. et al. Aldehyde dehydrogenase 1 (ALDH1) isoform expression and potential clinical implications in hepatocellular carcinoma. PLoS One 2017; 12 (08) e0182208
- 161 Liu ZY, Lin XH, Guo HY. et al. Multi-Omics profiling identifies aldehyde dehydrogenase 2 as a critical mediator in the crosstalk between Treg-mediated immunosuppression microenvironment and hepatocellular carcinoma. Int J Biol Sci 2024; 20 (07) 2763-2778
- 162 Dinavahi SS, Bazewicz CG, Gowda R, Robertson GP. Aldehyde dehydrogenase inhibitors for cancer therapeutics. Trends Pharmacol Sci 2019; 40 (10) 774-789
- 163 Zanoni M, Bravaccini S, Fabbri F, Arienti C. Emerging roles of aldehyde dehydrogenase isoforms in anti-cancer therapy resistance. Front Med (Lausanne) 2022; 9: 795762
- 164 Terenzi A, Pirker C, Keppler BK, Berger W. Anticancer metal drugs and immunogenic cell death. J Inorg Biochem 2016; 165: 71-79
- 165 Bugter JM, Fenderico N, Maurice MM. Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat Rev Cancer 2021; 21 (01) 5-21
- 166 Calderaro J, Nault JC, Bioulac-Sage P. et al. ALDH3A1 is overexpressed in a subset of hepatocellular carcinoma characterised by activation of the Wnt/ß-catenin pathway. Virchows Arch 2014; 464 (01) 53-60
- 167 Lam KH, Ma S. Noncellular components in the liver cancer stem cell niche: biology and potential clinical implications. Hepatology 2023; 78 (03) 991-1005
- 168 Zeng Z, Fu M, Hu Y, Wei Y, Wei X, Luo M. Regulation and signaling pathways in cancer stem cells: implications for targeted therapy for cancer. Mol Cancer 2023; 22 (01) 172
- 169 Lingala S, Cui YY, Chen X. et al. Immunohistochemical staining of cancer stem cell markers in hepatocellular carcinoma. Exp Mol Pathol 2010; 89 (01) 27-35
- 170 Deng S, Yang X, Lassus H. et al. Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One 2010; 5 (04) e10277
- 171 Xin HW, Ambe CM, Hari DM. et al. Label-retaining liver cancer cells are relatively resistant to sorafenib. Gut 2013; 62 (12) 1777-1786
- 172 Gan G, Shi Z, Liu D. et al. 3-hydroxyanthranic acid increases the sensitivity of hepatocellular carcinoma to sorafenib by decreasing tumor cell stemness. Cell Death Discov 2021; 7 (01) 173
- 173 Zhang G, Wang Y, Fuchs BC. et al. Improving the therapeutic efficacy of sorafenib for hepatocellular carcinoma by repurposing disulfiram. Front Oncol 2022; 12: 913736
- 174 Suzuki E, Chiba T, Zen Y. et al. Aldehyde dehydrogenase 1 is associated with recurrence-free survival but not stem cell-like properties in hepatocellular carcinoma. Hepatol Res 2012; 42 (11) 1100-1111
- 175 Tanaka K, Tomita H, Hisamatsu K. et al. ALDH1A1-overexpressing cells are differentiated cells but not cancer stem or progenitor cells in human hepatocellular carcinoma. Oncotarget 2015; 6 (28) 24722-24732
- 176 Xue G, Feng J, Zhang R. et al. Three Klebsiella species as potential pathobionts generating endogenous ethanol in a clinical cohort of patients with auto-brewery syndrome: a case control study. EBioMedicine 2023; 91: 104560
- 177 Zhu L, Baker SS, Gill C. et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 2013; 57 (02) 601-609
- 178 Engstler AJ, Aumiller T, Degen C. et al. Insulin resistance alters hepatic ethanol metabolism: studies in mice and children with non-alcoholic fatty liver disease. Gut 2016; 65 (09) 1564-1571