CC BY-NC-ND 4.0 · Pneumologie
DOI: 10.1055/a-2542-5101
Original Article

At-home validation of a non-contact, radar-based breathing monitor for long-term care of patients with respiratory diseases: A proof-of-concept study

Häusliche Validierung eines kontaktlosen, radarbasierten Atmungsmonitors für die Langzeitbetreuung von Patienten mit Atemwegserkrankungen: Eine Proof-of-Concept-Studie
1   Medizinische Fakultät, Universität Ulm, Ulm, Germany (Ringgold ID: RIN9189)
,
Torsten Eggert
2   Pneumologie, Ruhrlandklinik, Universitätsmedizin Essen, Essen, Germany (Ringgold ID: RIN536544)
,
Alina Wildenauer
2   Pneumologie, Ruhrlandklinik, Universitätsmedizin Essen, Essen, Germany (Ringgold ID: RIN536544)
,
Sarah Dietz-Terjung
2   Pneumologie, Ruhrlandklinik, Universitätsmedizin Essen, Essen, Germany (Ringgold ID: RIN536544)
,
Rainer Voisard
3   Klinik für Innere Medizin, Bundeswehrkrankenhaus Ulm, Ulm, Germany (Ringgold ID: RIN39542)
,
Christoph Schöbel
4   Schlafmedizinisches Zentrum, Ruhrlandklinik, Essen, Germany (Ringgold ID: RIN530897)
› Institutsangaben
T.F. received a general project funding granted by the German Association of Sleep Medicine (DGSM), which did not influence the study design, analysis, interpretation or the writing of the manuscript.

Abstract

Background

Long-term monitoring of respiratory rate (RR) is an important component in the management of chronic respiratory diseases (CRDs). Specifically, predicting acute exacerbations of chronic obstructive pulmonary disease (AECOPD) is of significant scientific and clinical interest. This study aimed to evaluate the long-term validity of a novel contactless sleep monitor (CSM) in the home environment of CRD patients receiving ventilatory support. Additionally, we assessed patient acceptance, device usability, and RR fluctuations associated with AECOPD to establish a robust foundation for future research.

Patients and Methods

In this prospective proof-of-concept study, nineteen patients requiring non-invasive ventilation (NIV) were provided with the CSM in their home environment for six months and seven patients requiring invasive mechanical ventilation (IMV) for one month. The primary indication for NIV therapy was chronic obstructive pulmonary disease (COPD).

The CSM was validated under real-life conditions by comparing its nocturnal RR values with software data from both types of ventilators. Acceptability and usability of the sensor were assessed using a questionnaire. Additionally, COPD exacerbations occurring during the study period were analyzed for potential RR fluctuations preceding these events.

Results

Mean absolute error (MAE) of median RR between the NIV device and the CSM, based on 2326 nights, was 0.78 (SD: 1.96) breaths per minute (brpm). MAE between the IMV device and the CSM was 0.12 brpm (SD: 0.52) for 215 nights. The non-contact device was accepted by the patients and proved to be easy in use. In some of the overall only 13 cases of AECOPD, RR time courses showed variations of increased nocturnal respiratory activity a few days before the occurrence of such events.

Conclusion

The present CSM is suitable for valid long-term monitoring of nocturnal RR in patients’ home environment and is well accepted by the patients. The exploratory findings related to AECOPD events may serve as a starting point for larger studies aimed at developing robust prediction rules.

Zusammenfassung

Hintergrund

Die langfristige Überwachung der Atemfrequenz (RR) ist ein wichtiger Baustein für das Management chronischer Atemwegserkrankungen (CRD). Dabei ist insbesondere die Vorhersage akuter Exazerbationen der chronisch obstruktiven Lungenerkrankung (AECOPD) von großem wissenschaftlichem und klinischem Interesse. Ziel der vorliegenden Studie war es, die Langzeitvalidität eines neuen kontaktlosen Schlafmonitors (CSM) in der häuslichen Umgebung von CRD-Patienten mit Beatmungsunterstützung zu evaluieren. Zudem wurden die Patientenakzeptanz und die Benutzerfreundlichkeit des Gerätes erfasst sowie RR-Schwankungen im Zusammenhang mit AECOPD untersucht, um eine robuste Grundlage für zukünftige Forschung zu schaffen.

Patienten und Methoden

In dieser prospektiven Proof-of-Concept-Studie wurden 19 Patienten, die eine nicht-invasive Beatmung (NIV) benötigten, und 7 Patienten, die eine invasive mechanische Beatmungstherapie (IMV) benötigten, jeweils 6 bzw. 1 Monat lang mit dem CSM in ihrer häuslichen Umgebung versorgt. Die Hauptindikation für die NIV-Therapie war die Diagnose einer chronisch obstruktiven Lungenerkrankung (COPD).

Der CSM wurde unter realen Bedingungen validiert, indem seine nächtlichen RR-Werte mit den Softwaredaten der Beatmungsgeräte verglichen wurden. Die Akzeptanz und Benutzerfreundlichkeit des Sensors wurden mittels eines Fragebogens bewertet. COPD-Exazerbationen, die während des Studienzeitraums auftraten, wurden auf mögliche RR-Schwankungen untersucht, die diesen Ereignissen vorausgingen.

Ergebnisse

Der mittlere absolute Fehler (MAE) der medianen Atemfrequenz zwischen den NIV-Geräten und dem CSM betrug 0,78 (SD: 1,96) Atemzüge pro Minute (brpm), basierend auf 2326 Nächten. Der MAE zwischen den IMV-Geräten und dem CSM betrug für 215 Nächte 0,12 brpm (SD: 0,52). Der CSM wurde von den Patienten akzeptiert und erwies sich als leicht bedienbar. In einigen der nur insgesamt 13 Fälle von AECOPD wiesen die Atemfrequenzverläufe in den Tagen vor dem Auftreten der Ereignisse Schwankungen mit erhöhter nächtlicher Atemaktivität auf.

Schlussfolgerung

Der CSM eignet sich für die valide Langzeitüberwachung der nächtlichen Atemfrequenz im häuslichen Umfeld und wird von den Patienten gut akzeptiert. Die explorativen Ergebnisse im Zusammenhang mit AECOPD-Ereignissen können als Grundlage für größere Studien dienen, die auf die Entwicklung robuster Vorhersagemodelle abzielen.

Supplementary Material



Publikationsverlauf

Eingereicht: 03. September 2024

Angenommen nach Revision: 31. Januar 2025

Artikel online veröffentlicht:
09. Mai 2025

© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 Lee SM, Lee DH. Opportunities and challenges for contactless healthcare services in the post-COVID-19 Era. Technol Forecast Soc Change 2021; 167: 120712
  • 2 van Dam PMEL, Lievens S, Zelis N. et al. Head-to-head comparison of 19 prediction models for short-term outcome in medical patients in the emergency department: a retrospective study. Ann Med 2023; 55: 2290211
  • 3 McNally M, Curtain J, O’Brien KK. et al. Validity of British Thoracic Society guidance (the CRB-65 rule) for predicting the severity of pneumonia in general practice: Systematic review and meta-analysis. Br J Gen Pract 2010; 60: e423-e433
  • 4 Forleo GB, Santini L, Campoli M. et al. Long-term monitoring of respiratory rate in patients with heart failure: the Multiparametric Heart Failure Evaluation in Implantable Cardioverter-Defibrillator Patients (MULTITUDE-HF) study. J Interv Card Electrophysiol 2015; 43: 135-144
  • 5 Straßburg S, Linker CM, Brato S. et al. Investigation of respiratory rate in patients with cystic fibrosis using a minimal-impact biomotion system. BMC Pulm Med 2022; 22: 59
  • 6 Ballal T, Heneghan C, Zaffaroni A. et al. A pilot study of the nocturnal respiration rates in COPD patients in the home environment using a non-contact biomotion sensor. Physiol Meas 2014; 35: 2513-2527
  • 7 Blouet S, Sutter J, Fresnel E. et al. Prediction of severe acute exacerbation using changes in breathing pattern of COPD patients on home noninvasive ventilation. Int J Chron Obstruct Pulmon Dis 2018; 13: 2577-2586
  • 8 Borel JC, Pelletier J, Taleux N. et al. Parameters recorded by software of non-invasive ventilators predict copd exacerbation: A proof-of-concept study. Thorax 2015; 70: 284-285
  • 9 Yañez AM, Guerrero D, Pérez De Alejo R. et al. Monitoring breathing rate at home allows early identification of COPD exacerbations. Chest 2012; 142: 1524-1529
  • 10 Adeloye D, Song P, Zhu Y. et al. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: a systematic review and modelling analysis. Lancet Respir Med 2022; 10: 447-458
  • 11 GBD Chronic Respiratory Disease Collaborators . Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017 – a systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir Med 2020; 8: 585-596
  • 12 Wedzicha JA, Seemungal TAR. COPD exacerbations: defining their cause and prevention. Lancet 2007; 370: 786-796
  • 13 Hurst JR, Siddiqui MK, Singh B. et al. A systematic literature review of the humanistic burden of copd. Int J Chron Obstruct Pulmon Dis 2021; 16: 1303-1314
  • 14 Seemungal TAR, Donaldson GC, Bhowmik A. et al. Time Course and Recovery of Exacerbations in Patients with Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2000; 161: 1608-1613
  • 15 Shah SA, Velardo C, Farmer A. et al. Exacerbations in chronic obstructive pulmonary disease: Identification and prediction using a digital health system. J Med Internet Res 2017; 19: e69
  • 16 Wilkinson TMA, Donaldson GC, Hurst JR. et al. Early therapy improves outcomes of exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2004; 169: 1298-1303
  • 17 Polsky MB, Moraveji N. Early identification and treatment of COPD exacerbation using remote respiratory monitoring. Respir Med Case Rep 2021; 34: 101475
  • 18 Dietz-Terjung S, Geldmacher J, Brato S. et al. A novel minimal-contact biomotion method for long-term respiratory rate monitoring. Sleep Breath 2021; 25: 145-149
  • 19 Lauteslager T, Maslik M, Siddiqui F. et al. Validation of a new contactless and continuous respiratory rate monitoring device based on ultra-wideband radar technology. Sensors 2021; 21: 4027
  • 20 Nicolò A, Massaroni C, Schena E. et al. The importance of respiratory rate monitoring: From healthcare to sport and exercise. Sensors (Switzerland) 2020; 20: 1-45
  • 21 Bujan B, Fischer T, Dietz-Terjung S. et al. Clinical validation of a contactless respiration rate monitor. Sci Rep 2023; 13: 3480
  • 22 Borel JC, Palot A, Patout M. Technological advances in home non-invasive ventilation monitoring: Reliability of data and effect on patient outcomes. Respirology 2019; 24: 1143-1151
  • 23 Do W, Russell R, Wheeler C. et al. Performance of Contactless Respiratory Rate Monitoring by Albus HomeTM, an Automated System for Nocturnal Monitoring at Home: A Validation Study. Sensors 2022; 22: 7142
  • 24 Rubio N, Parker RA, Drost EM. et al. Home monitoring of breathing rate in people with chronic obstructive pulmonary disease: Observational study of feasibility, acceptability, and change after exacerbation. Int J Chron Obstruct Pulmon Dis 2017; 12: 1221-1231
  • 25 Janssens JP, Borel JC, Pépin JL. Nocturnal monitoring of home non-invasive ventilation: The contribution of simple tools such as pulse oximetry, capnography, built-in ventilator software and autonomic markers of sleep fragmentation. Thorax 2011; 66: 438-445
  • 26 Tran VP, Al-Jumaily AA, Islam SMS. Doppler radar-based non-contact health monitoring for obstructive sleep apnea diagnosis: A comprehensive review. Big Data and Cognitive Computing 2019; 3: 1-21
  • 27 Hawthorne G, Richardson M, Greening NJ. et al. A proof of concept for continuous, non-invasive, free-living vital signs monitoring to predict readmission following an acute exacerbation of COPD: a prospective cohort study. Respir Res 2022; 23: 102
  • 28 Mehdipour A, Wiley E, Richardson J. et al. The Performance of Digital Monitoring Devices for Oxygen Saturation and Respiratory Rate in COPD: A Systematic Review. COPD 2021; 18: 469-475
  • 29 Miłkowska-Dymanowska J, Białas AJ, Obrębski W. et al. A pilot study of daily telemonitoring to predict acute exacerbation in chronic obstructive pulmonary disease. Int J Med Inform 2018; 116: 46-51
  • 30 Sanchez-Morillo D, Fernandez-Granero MA, Jiménez AL. Detecting COPD exacerbations early using daily telemonitoring of symptoms and k-means clustering: a pilot study. Med Biol Eng Comput 2015; 53: 441-451
  • 31 Viniol C, Vogelmeier CF. Exacerbations of COPD. Eur Respir Rev 2018; 27: 170103