RSS-Feed abonnieren

DOI: 10.1055/a-2542-5101
At-home validation of a non-contact, radar-based breathing monitor for long-term care of patients with respiratory diseases: A proof-of-concept study
Häusliche Validierung eines kontaktlosen, radarbasierten Atmungsmonitors für die Langzeitbetreuung von Patienten mit Atemwegserkrankungen: Eine Proof-of-Concept-StudieT.F. received a general project funding granted by the German Association of Sleep Medicine (DGSM), which did not influence the study design, analysis, interpretation or the writing of the manuscript.

Abstract
Background
Long-term monitoring of respiratory rate (RR) is an important component in the management of chronic respiratory diseases (CRDs). Specifically, predicting acute exacerbations of chronic obstructive pulmonary disease (AECOPD) is of significant scientific and clinical interest. This study aimed to evaluate the long-term validity of a novel contactless sleep monitor (CSM) in the home environment of CRD patients receiving ventilatory support. Additionally, we assessed patient acceptance, device usability, and RR fluctuations associated with AECOPD to establish a robust foundation for future research.
Patients and Methods
In this prospective proof-of-concept study, nineteen patients requiring non-invasive ventilation (NIV) were provided with the CSM in their home environment for six months and seven patients requiring invasive mechanical ventilation (IMV) for one month. The primary indication for NIV therapy was chronic obstructive pulmonary disease (COPD).
The CSM was validated under real-life conditions by comparing its nocturnal RR values with software data from both types of ventilators. Acceptability and usability of the sensor were assessed using a questionnaire. Additionally, COPD exacerbations occurring during the study period were analyzed for potential RR fluctuations preceding these events.
Results
Mean absolute error (MAE) of median RR between the NIV device and the CSM, based on 2326 nights, was 0.78 (SD: 1.96) breaths per minute (brpm). MAE between the IMV device and the CSM was 0.12 brpm (SD: 0.52) for 215 nights. The non-contact device was accepted by the patients and proved to be easy in use. In some of the overall only 13 cases of AECOPD, RR time courses showed variations of increased nocturnal respiratory activity a few days before the occurrence of such events.
Conclusion
The present CSM is suitable for valid long-term monitoring of nocturnal RR in patients’ home environment and is well accepted by the patients. The exploratory findings related to AECOPD events may serve as a starting point for larger studies aimed at developing robust prediction rules.
Zusammenfassung
Hintergrund
Die langfristige Überwachung der Atemfrequenz (RR) ist ein wichtiger Baustein für das Management chronischer Atemwegserkrankungen (CRD). Dabei ist insbesondere die Vorhersage akuter Exazerbationen der chronisch obstruktiven Lungenerkrankung (AECOPD) von großem wissenschaftlichem und klinischem Interesse. Ziel der vorliegenden Studie war es, die Langzeitvalidität eines neuen kontaktlosen Schlafmonitors (CSM) in der häuslichen Umgebung von CRD-Patienten mit Beatmungsunterstützung zu evaluieren. Zudem wurden die Patientenakzeptanz und die Benutzerfreundlichkeit des Gerätes erfasst sowie RR-Schwankungen im Zusammenhang mit AECOPD untersucht, um eine robuste Grundlage für zukünftige Forschung zu schaffen.
Patienten und Methoden
In dieser prospektiven Proof-of-Concept-Studie wurden 19 Patienten, die eine nicht-invasive Beatmung (NIV) benötigten, und 7 Patienten, die eine invasive mechanische Beatmungstherapie (IMV) benötigten, jeweils 6 bzw. 1 Monat lang mit dem CSM in ihrer häuslichen Umgebung versorgt. Die Hauptindikation für die NIV-Therapie war die Diagnose einer chronisch obstruktiven Lungenerkrankung (COPD).
Der CSM wurde unter realen Bedingungen validiert, indem seine nächtlichen RR-Werte mit den Softwaredaten der Beatmungsgeräte verglichen wurden. Die Akzeptanz und Benutzerfreundlichkeit des Sensors wurden mittels eines Fragebogens bewertet. COPD-Exazerbationen, die während des Studienzeitraums auftraten, wurden auf mögliche RR-Schwankungen untersucht, die diesen Ereignissen vorausgingen.
Ergebnisse
Der mittlere absolute Fehler (MAE) der medianen Atemfrequenz zwischen den NIV-Geräten und dem CSM betrug 0,78 (SD: 1,96) Atemzüge pro Minute (brpm), basierend auf 2326 Nächten. Der MAE zwischen den IMV-Geräten und dem CSM betrug für 215 Nächte 0,12 brpm (SD: 0,52). Der CSM wurde von den Patienten akzeptiert und erwies sich als leicht bedienbar. In einigen der nur insgesamt 13 Fälle von AECOPD wiesen die Atemfrequenzverläufe in den Tagen vor dem Auftreten der Ereignisse Schwankungen mit erhöhter nächtlicher Atemaktivität auf.
Schlussfolgerung
Der CSM eignet sich für die valide Langzeitüberwachung der nächtlichen Atemfrequenz im häuslichen Umfeld und wird von den Patienten gut akzeptiert. Die explorativen Ergebnisse im Zusammenhang mit AECOPD-Ereignissen können als Grundlage für größere Studien dienen, die auf die Entwicklung robuster Vorhersagemodelle abzielen.
Publikationsverlauf
Eingereicht: 03. September 2024
Angenommen nach Revision: 31. Januar 2025
Artikel online veröffentlicht:
09. Mai 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1
Lee SM,
Lee DH.
Opportunities and challenges for contactless healthcare services in the post-COVID-19
Era. Technol Forecast Soc Change 2021; 167: 120712
MissingFormLabel
- 2
van Dam PMEL,
Lievens S,
Zelis N.
et al.
Head-to-head comparison of 19 prediction models for short-term outcome in medical
patients in the emergency department: a retrospective study. Ann Med 2023; 55: 2290211
MissingFormLabel
- 3
McNally M,
Curtain J,
O’Brien KK.
et al.
Validity of British Thoracic Society guidance (the CRB-65 rule) for predicting the
severity of pneumonia in general practice: Systematic review and meta-analysis. Br
J Gen Pract 2010; 60: e423-e433
MissingFormLabel
- 4
Forleo GB,
Santini L,
Campoli M.
et al.
Long-term monitoring of respiratory rate in patients with heart failure: the Multiparametric
Heart Failure Evaluation in Implantable Cardioverter-Defibrillator Patients (MULTITUDE-HF)
study. J Interv Card Electrophysiol 2015; 43: 135-144
MissingFormLabel
- 5
Straßburg S,
Linker CM,
Brato S.
et al.
Investigation of respiratory rate in patients with cystic fibrosis using a minimal-impact
biomotion system. BMC Pulm Med 2022; 22: 59
MissingFormLabel
- 6
Ballal T,
Heneghan C,
Zaffaroni A.
et al.
A pilot study of the nocturnal respiration rates in COPD patients in the home environment
using a non-contact biomotion sensor. Physiol Meas 2014; 35: 2513-2527
MissingFormLabel
- 7
Blouet S,
Sutter J,
Fresnel E.
et al.
Prediction of severe acute exacerbation using changes in breathing pattern of COPD
patients on home noninvasive ventilation. Int J Chron Obstruct Pulmon Dis 2018; 13:
2577-2586
MissingFormLabel
- 8
Borel JC,
Pelletier J,
Taleux N.
et al.
Parameters recorded by software of non-invasive ventilators predict copd exacerbation:
A proof-of-concept study. Thorax 2015; 70: 284-285
MissingFormLabel
- 9
Yañez AM,
Guerrero D,
Pérez De Alejo R.
et al.
Monitoring breathing rate at home allows early identification of COPD exacerbations.
Chest 2012; 142: 1524-1529
MissingFormLabel
- 10
Adeloye D,
Song P,
Zhu Y.
et al.
Global, regional, and national prevalence of, and risk factors for, chronic obstructive
pulmonary disease (COPD) in 2019: a systematic review and modelling analysis. Lancet
Respir Med 2022; 10: 447-458
MissingFormLabel
- 11
GBD Chronic Respiratory Disease Collaborators
.
Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017
– a systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir
Med 2020; 8: 585-596
MissingFormLabel
- 12
Wedzicha JA,
Seemungal TAR.
COPD exacerbations: defining their cause and prevention. Lancet 2007; 370: 786-796
MissingFormLabel
- 13
Hurst JR,
Siddiqui MK,
Singh B.
et al.
A systematic literature review of the humanistic burden of copd. Int J Chron Obstruct
Pulmon Dis 2021; 16: 1303-1314
MissingFormLabel
- 14
Seemungal TAR,
Donaldson GC,
Bhowmik A.
et al.
Time Course and Recovery of Exacerbations in Patients with Chronic Obstructive Pulmonary
Disease. Am J Respir Crit Care Med 2000; 161: 1608-1613
MissingFormLabel
- 15
Shah SA,
Velardo C,
Farmer A.
et al.
Exacerbations in chronic obstructive pulmonary disease: Identification and prediction
using a digital health system. J Med Internet Res 2017; 19: e69
MissingFormLabel
- 16
Wilkinson TMA,
Donaldson GC,
Hurst JR.
et al.
Early therapy improves outcomes of exacerbations of chronic obstructive pulmonary
disease. Am J Respir Crit Care Med 2004; 169: 1298-1303
MissingFormLabel
- 17
Polsky MB,
Moraveji N.
Early identification and treatment of COPD exacerbation using remote respiratory monitoring.
Respir Med Case Rep 2021; 34: 101475
MissingFormLabel
- 18
Dietz-Terjung S,
Geldmacher J,
Brato S.
et al.
A novel minimal-contact biomotion method for long-term respiratory rate monitoring.
Sleep Breath 2021; 25: 145-149
MissingFormLabel
- 19
Lauteslager T,
Maslik M,
Siddiqui F.
et al.
Validation of a new contactless and continuous respiratory rate monitoring device
based on ultra-wideband radar technology. Sensors 2021; 21: 4027
MissingFormLabel
- 20
Nicolò A,
Massaroni C,
Schena E.
et al.
The importance of respiratory rate monitoring: From healthcare to sport and exercise.
Sensors (Switzerland) 2020; 20: 1-45
MissingFormLabel
- 21
Bujan B,
Fischer T,
Dietz-Terjung S.
et al.
Clinical validation of a contactless respiration rate monitor. Sci Rep 2023; 13: 3480
MissingFormLabel
- 22
Borel JC,
Palot A,
Patout M.
Technological advances in home non-invasive ventilation monitoring: Reliability of
data and effect on patient outcomes. Respirology 2019; 24: 1143-1151
MissingFormLabel
- 23
Do W,
Russell R,
Wheeler C.
et al.
Performance of Contactless Respiratory Rate Monitoring by Albus HomeTM, an Automated
System for Nocturnal Monitoring at Home: A Validation Study. Sensors 2022; 22: 7142
MissingFormLabel
- 24
Rubio N,
Parker RA,
Drost EM.
et al.
Home monitoring of breathing rate in people with chronic obstructive pulmonary disease:
Observational study of feasibility, acceptability, and change after exacerbation.
Int J Chron Obstruct Pulmon Dis 2017; 12: 1221-1231
MissingFormLabel
- 25
Janssens JP,
Borel JC,
Pépin JL.
Nocturnal monitoring of home non-invasive ventilation: The contribution of simple
tools such as pulse oximetry, capnography, built-in ventilator software and autonomic
markers of sleep fragmentation. Thorax 2011; 66: 438-445
MissingFormLabel
- 26
Tran VP,
Al-Jumaily AA,
Islam SMS.
Doppler radar-based non-contact health monitoring for obstructive sleep apnea diagnosis:
A comprehensive review. Big Data and Cognitive Computing 2019; 3: 1-21
MissingFormLabel
- 27
Hawthorne G,
Richardson M,
Greening NJ.
et al.
A proof of concept for continuous, non-invasive, free-living vital signs monitoring
to predict readmission following an acute exacerbation of COPD: a prospective cohort
study. Respir Res 2022; 23: 102
MissingFormLabel
- 28
Mehdipour A,
Wiley E,
Richardson J.
et al.
The Performance of Digital Monitoring Devices for Oxygen Saturation and Respiratory
Rate in COPD: A Systematic Review. COPD 2021; 18: 469-475
MissingFormLabel
- 29
Miłkowska-Dymanowska J,
Białas AJ,
Obrębski W.
et al.
A pilot study of daily telemonitoring to predict acute exacerbation in chronic obstructive
pulmonary disease. Int J Med Inform 2018; 116: 46-51
MissingFormLabel
- 30
Sanchez-Morillo D,
Fernandez-Granero MA,
Jiménez AL.
Detecting COPD exacerbations early using daily telemonitoring of symptoms and k-means
clustering: a pilot study. Med Biol Eng Comput 2015; 53: 441-451
MissingFormLabel
- 31
Viniol C,
Vogelmeier CF.
Exacerbations of COPD. Eur Respir Rev 2018; 27: 170103
MissingFormLabel