Subscribe to RSS

DOI: 10.1055/a-2539-8742
Phosphate Recovery at “A Campingflight to Lowlands Paradise”: Organic Micropollutant Uptake and Environmental Risk Assessment
Funding information We gratefully acknowledge funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 818309 (www.lex4bio.eu) and the European Union’s Justice Programme – Drugs Policy under grant agreement No. 861602 (www.euseme.eu).

Abstract
Despite increasing interest in struvite as a renewable phosphate source and fertilizer, research into real-world cases of organic micropollutant contamination in struvite is limited, with no studies addressing the inclusion of illicit substances. Urine is an ideal matrix to precipitate struvite from and study its organic contamination, as it contains the majority of organic contaminants as well as nutrients excreted by humans. As such, we devised a worst-case scenario in terms of organic contamination by collecting urine at the Dutch festival “A Campingflight to Lowlands Paradise” and precipitating struvite on-site in three batches. This festival setting provided a highly contaminated urine source, offering extreme conditions to evaluate to what extent such contamination translates to struvite and if that struvite would be safe to use as fertilizer. Surveys on consumed pharmaceuticals and illicit drugs by participants guided subsequent analysis of urine and struvite samples, which was performed using liquid chromatography–tandem mass spectrometry (LC–MS/MS). Concentrations of organic contaminants in the urine corresponded well with the survey results and were found in a broad range from <1 to over 34,000 ng mL−1. Concentrations found in the struvite precipitates generally showed a correlation proportional to contaminant K oc values with those found in their respective urine source and were predominantly in the range of 1–100 ng g−1, with an outlier at 1081 ng g−1. Based on these numbers, the environmental risk associated with using the precipitated struvite as renewable phosphate fertilizer was classified as insignificant in all cases. After 100 years of hypothetical Lowlands-struvite application as fertilizer, only paracetamol and MDMA would be classified as having low risk. All other analytes remain an insignificant environmental risk, showing struvite to be a safe, renewable phosphate source in terms of organic contamination.
Keywords
Nutrient recycling - Struvite recovery - Target analysis - Organic micropollutants - Environmental risk assessmentSupplementary Material
- Supplementary Material 1 is available at https://doi.org/10.1055/a-2539-8742.
- Supporting Information
- Supplementary Material 2 is available at https://doi.org/10.1055/a-2539-8742.
- Supporting Information
- Supplementary Material 3 is available at https://doi.org/10.1055/a-2539-8742.
- Supporting Information
Publication History
Received: 27 November 2024
Accepted after revision: 12 February 2025
Accepted Manuscript online:
14 February 2025
Article published online:
05 March 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
Steven Beijer, Noelia Salgueiro-Gonzalez, Sara Castiglioni, Juan C. Gerlein, Peter Scheer, G Bas de Jong, J Chris Slootweg. Phosphate Recovery at “A Campingflight to Lowlands Paradise”: Organic Micropollutant Uptake and Environmental Risk Assessment. Sustainability & Circularity NOW 2025; 02: a25398742.
DOI: 10.1055/a-2539-8742
-
References
- 1 Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell. Garland Science; New York: 2008
- 2 Jupp AR, Beijer S, Narain GC, Schipper W, Slootweg JC. Chem. Soc. Rev. 2021; 50: 87-101
- 3 Filipelli GM. Elements 2008; 4: 89-95
- 4 Asimov I. In Mag. Fantasy Sci. Fict.. Mercury Press; Oklahoma City: 1959
- 5 Cordell D, Drangert J, White S. Glob. Environ. Chang. 2009; 19: 292-305
- 6 van Kauwenbergh SJ, Stewart M, Mikkelsen R. Better Crop. 2013; 97: 18-20
- 7 European Commission. Critical Raw Materials Resilience: Charting a Path towards Greater Security and Sustainability. European Commission; 2020
- 8 Rittmann BE, Mayer B, Westerhoff P, Edwards M. Chemosphere 2011; 84: 846-853
- 9 Gustavsson J, Cederberg C, Sonesson U, van Otterdijk R, Meybeck A. Global Food Losses and Food Wastes: Extent, Causes and Prevention. Rome: 2011
- 10 Scherhaufer S, Moates G, Hartikainen H, Waldron K, Obersteiner G. Waste Manage. 2018; 77: 98-113
- 11 Cordell D, White S. Sustainability 2011; 3: 2027-2049
- 12 van Dijk KC, Lesschen JP, Oenema O. Sci. Total Environ. 2016; 542: 1078-1093
- 13 Withers PJ. A, van Dijk KC, Neset TS. S, Nesme T, Oenema O, Rubæk GH, Schoumans OF, Smit B, Pellerin S. Ambio 2015; 44: 193-206
- 14 Egle L, Rechberger H, Krampe J, Zessner M. Sci. Total Environ. 2016; 571: 522-542
- 15 Talboys PJ, Heppell J, Roose T, Healey JR, Jones DL, Withers PJ. A. Plant Soil 2016; 401: 109-123
- 16 Huygens D, Saveyn H, Tonini D, Eder P, Sancho LD. Technical Proposals for Selected New Fertilising Materials under the Fertilising Products Regulation (Regulation (EU) 2019/1009): Process and Quality Criteria, and Assessment of Environmental and Market Impacts for Precipitated Phosphate Salts & Derivates. 2019
- 17 Shaddel S, Bakhtiary-Davijany H, Kabbe C, Dadgar F, Østerhus SW. Sustainability 2019; 11: 1-12
- 18 Muys M, Phukan R, Brader G, Samad A, Moretti M, Haiden B, Pluchon S, Roest K, Vlaeminck SE, Spiller M. Sci. Total Environ. 2021; 756: 143726
- 19 Snoeyink VL, Jenkins D. Water Chemistry. John Wiley & Sons, Inc.; New York: 1980
- 20 Ohlinger KN, Young TM, Schroeder ED. Water Res. 1998; 32: 3607-3614
- 21 Booker NA, Priestley AJ, Fraser IH. Environ. Technol. 1999; 20: 777-782
- 22 Buchanan JR, Mote CR, Robinson RB. Trans. Am. Soc. Agric. Eng. 1994; 37: 617-621
- 23 Kehrein P, Van Loosdrecht M, Osseweijer P, Garfí M, Dewulf J, Posada J. Environ. Sci.: Water Res. Technol. 2020; 6: 877-910
- 24 Cornel P, Schaum C. Water Sci. Technol. 2009; 59: 1069-1076
- 25 Doyle JD, Parsons SA. Water Res. 2002; 36: 3925-3940
- 26 Le Corre KS, Valsami-Jones E, Hobbs P, Parsons SA. Crit. Rev. Environ. Sci. Technol. 2009; 39: 433-477
- 27 Crutchik D, Garrido JM. Chemosphere 2016; 154: 567-572
- 28 Ronteltap M, Maurer M, Gujer W. Water Res. 2007; 41: 1859-1868
- 29 de Boer MA, Hammerton M, Slootweg JC. Water Res. 2018; 133: 19-26
- 30 STOWA. Verkenning van de Kwaliteit van Struviet Uit de Communale Afvalwaterketen. 2015
- 31 Friedler E, Butler D, Alfiya Y. In Source Sep. Decentralization Wastewater Manag. Larsen TA, Udert KM, Lienert J. Eds IWA Publishing; 2013. pp 241-257
- 32 Udert KM, Larsen TA, Gujer W. Water Sci. Technol. 2006; 54: 413-420
- 33 Larsen TA, Gujer W. Water Sci. Technol. 1996; 34: 87-94
- 34 Lienert J, Bürki T, Escher BI. Water Sci. Technol. 2007; 56: 87-96
- 35 Liu Z, Zhao Q, Wang K, Lee D, Qiu W, Wang J. J. Environ. Sci. 2008; 20: 1018-1024
- 36 Etter B, Tilley E, Khadka R, Udert KM. Water Res. 2011; 45: 852-862
- 37 Liu X, Hu Z, Mu J, Zang H, Liu L. Environ. Technol. 2014; 35: 2781-2787
- 38 Petrie B, Youdan J, Barden R, Kasprzyk-Hordern B. J. Chromatogr. A 2016; 1431: 64-78
- 39 Drugbank, webpage on cocaethylene, can be found under https://go.drugbank.com/metabolites/DBMET00645
- 40 Grabic R, Ivanová L, Kodešová R, Grabicová K, Vojs Staňová A, Imreová Z, Drtil M, Bodík I. Water Res. 2022; 220 118651
- 41 Dinis-Oliveira RJ. Forensic Sci. Res. 2017; 2: 2-10
- 42 Drugbank, webpage on norKetamine, can be found under https://go.drugbank.com/metabolites/DBMET00189
- 43 Avdeef A, Berger CM, Brownell C. Pharm. Res. 2000; 17: 85-89
- 44 Settimo L, Bellman K, Knegtel RM. A. Pharm. Res. 2014; 31: 1082-1095
- 45 Malev O, Lovrić M, Stipaničev D, Repec S, Martinović-Weigelt D, Zanella D, Ivanković T, Sindičić Đuretec V, Barišić J, Li M, Klobučar G. Environ. Pollut. 2020; 266 115162
- 46 Ahjel SW, Lupuleasa D. Farmacia 2009; 57: 290-300
- 47 Drugbank, webpage on atorvastatine, can be found under https://go.drugbank.com/drugs/DB01076
- 48 Kirla KT, Erhart C, Groh KJ, Stadnicka-Michalak J, Eggen RI. L, Schirmer K, Kraemer T. Toxicol. Appl. Pharmacol. 2021; 419: 115483
- 49 Bijlsma L, Celma A, Castiglioni S, Salgueiro-González N, Bou-Iserte L, Baz-Lomba JA, Reid MJ, Dias MJ, Lopes A, Matias J, Pastor-Alcañiz L, Radonić J, Turk Sekulic M, Shine T, van Nuijs AL. N, Hernandez F, Zuccato E. Sci. Total Environ. 2020; 725 138376
- 50 Helfer AG, Michely JA, Weber AA, Meyer MR, Maurer HH. Anal. Chim. Acta 2015; 891: 221-233
- 51 Castiglioni S, Zuccato E, Crisci E, Chiabrando C, Fanelli R, Bagnati R. Anal. Chem. 2006; 78: 8421-8429
- 52 Castiglioni S, Davoli E, Riva F, Palmiotto M, Camporini P, Manenti A, Zuccato E. Water Res. 2018; 131: 287-298
- 53 Salgueiro-González N, Zuccato E, Castiglioni S. Sci. Total Environ. 2022; 843: 156982
- 54 Rijksdienst voor Ondernemend Nederland. Hoeveel Mest Gebruiken. Hoe Rekent u Dat Uit?. 2019
- 55 Commissie Deskundigen Meststoffenwet. Protocol Beoordeling Stoffen Meststoffenwet. Versie 3.2. Wageningen: 2016
- 56 European Commission. Technical Guidance Document on Risk Assessment Part III, Version 2, 2003. 2003
- 57 NORMAN. Deriving Environmental Quality Standards for Chemical Substances in Surface Waters. 2022
- 58 Thomaidi VS, Stasinakis AS, Borova VL, Thomaidis NS. J. Hazard. Mater. 2015; 283: 740-747
- 59 Smit CE. Effecten van Drugs Op Het Waterecosysteem. 2015
- 60
Janssen MP. M,
Traas TP,
Rila J.-P,
van Vlaardingen PL. A.
2004: 1-35
- 61 Wennmalm Å, Gunnarsson B. Environ. Int. 2009; 35: 775-777
- 62
Trimbos.
Webpage on use of drugs in the Netherlands in 2022, can be found under https://www.trimbos.nl/actueel/nieuws/nieuwe-cijfers-drugsgebruik-in-nederland-in-2022/?vgo_ee=GHN8IKYaWucDAsBHzK4f%2BIpsVVpzmcBI7c0sAXfy0nK99w%3D%3D%3AqDCW%2BlhIAMXLpf6cImugTGNCz3WQ1ezO
- 63 Yadav MK, Short MD, Aryal R, Gerber C, van den Akker B, Saint CP. Water Res. 2017; 124: 713-727
- 64 Bijlsma L, Emke E, Hernández F, De Voogt P. Chemosphere 2012; 89: 1399-1406
- 65 Khasawneh OF. S, Palaniandy P. Process Saf. Environ. Prot. 2021; 150: 532-556
- 66 Kemacheevakul P, Otani S, Matsuda T, Shimizu Y. Water Sci. Technol. 2012; 66: 2194-2201
- 67 Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ. Water Res. 2009; 43: 363-380
- 68 Kemacheevakul P, Chuangchote S, Otani S, Matsuda T, Shimizu Y. Water Sci. Technol. 2015; 72: 1102-1110
- 69 de Boer MA, Kabbe C, Slootweg JC. Environ. Sci. Technol. 2018; 52: 14564-14565
- 70 Butkovskyi A, Leal LH, Zeeman G, Rijnaarts HH. M. Environ. Res. 2017; 156: 434-442
- 71 Ye ZL, Deng Y, Lou Y, Ye X, Chen S. Front. Environ. Sci. Eng. 2018; 12: 1-7
- 72 European Commission. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regula. European Commission; 2019
- 73 Fu Q, Fedrizzi D, Kosfeld V, Schlechtriem C, Ganz V, Derrer S, Rentsch D, Hollender J. Environ. Sci. Technol. 2020; 54: 4400-4408