Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000066.xml
Rofo 2025; 197(08): 897-902
DOI: 10.1055/a-2532-5417
DOI: 10.1055/a-2532-5417
Forum Junge Radiologie
Radiologische Zukunft gestalten: KI aus Sicht junger Expert*innen

Die Radiologie befindet sich im Wandel durch die rasante Entwicklung künstlicher Intelligenz (KI). Als junge Radiolog*innen erleben wir gleichermaßen Begeisterung wie Unsicherheit im Umgang mit KI.
Publication History
Article published online:
22 July 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Kotter E, Ranschaert E. Challenges and solutions for introducing artificial intelligence (AI) in daily clinical workflow. Eur Radiol 2021; 31: 5-7
- 2 Brink JA, Hricak H. Radiology 2040. Radiology 2023; 306: 69-72
- 3 Wiggins WF, Magudia K, Schmidt TMS. et al. Imaging AI in Practice: A Demonstration of Future Workflow Using Integration Standards. Radiology: Artificial Intelligence 2021; 3: e210152
- 4 Jorg T, Halfmann MC, Stoehr F. et al. A novel reporting workflow for automated integration of artificial intelligence results into structured radiology reports. Insights Imaging 2024; 15: 80
- 5 Adams LC, Truhn D, Busch F. et al. Leveraging GPT-4 for Post Hoc Transformation of Free-text Radiology Reports into Structured Reporting: A Multilingual Feasibility Study. Radiology 2023; 307: e230725
- 6 Lesaunier A, Khlaut J, Dancette C. et al. Artificial intelligence in interventional radiology: Current concepts and future trends. Diagnostic and Interventional Imaging 2025; 106: 5-10
- 7 Glielmo P, Fusco S, Gitto S. et al. Artificial intelligence in interventional radiology: state of the art. Eur Radiol Exp 2024; 8: 62
- 8 Najafi A, Cazzato RL, Meyer BC. et al. CIRSE Position Paper on Artificial Intelligence in Interventional Radiology. Cardiovasc Intervent Radiol 2023; 46: 1303-1307
- 9 Warren BE, Bilbily A, Gichoya JW. et al. An Introductory Guide to Artificial Intelligence in Interventional Radiology: Part 1 Foundational Knowledge. Can Assoc Radiol J 2024; 75: 558-567
- 10 Clark P, Kim J, Aphinyanaphongs Y. Marketing and US Food and Drug Administration Clearance of Artificial Intelligence and Machine Learning Enabled Software in and as Medical Devices: A Systematic Review. JAMA Netw Open 2023; 6: e2321792
- 11 Van Leeuwen KG, De Rooij M, Schalekamp S. et al. Clinical use of artificial intelligence products for radiology in the Netherlands between 2020 and 2022. Eur Radiol 2023; 34: 348-354
- 12 Liu Y, Wen Z, Wang Y. et al. Artificial intelligence in ischemic stroke images: current applications and future directions. Front. Neurol 2024; 15: 1418060
- 13 Rothenberg SA, Savage CH, Abou Elkassem A. et al. Prospective Evaluation of AI Triage of Pulmonary Emboli on CT Pulmonary Angiograms. Radiology 2023; 309: e230702
- 14 Husarek J, Hess S, Razaeian S. et al. Artificial intelligence in commercial fracture detection products: a systematic review and meta-analysis of diagnostic test accuracy. Sci Rep 2024; 14: 23053
- 15 Geppert J, Asgharzadeh A, Brown A. et al. Software using artificial intelligence for nodule and cancer detection in CT lung cancer screening: systematic review of test accuracy studies. Thorax 2024; 79: 1040-1049
- 16 Lång K, Josefsson V, Larsson A-M. et al. Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (MASAI): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study. The Lancet Oncology 2023; 24: 936-944
- 17 Eisemann N, Bunk S, Mukama T. et al. Nationwide real-world implementation of AI for cancer detection in population-based mammography screening. Nat Med 2025; 31: 917-924
- 18 Koitka S, Kroll L, Malamutmann E. et al. Fully automated body composition analysis in routine CT imaging using 3D semantic segmentation convolutional neural networks. Eur Radiol 2021; 31: 1795-1804
- 19 Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF). S3-Leitlinie Diagnostik und Therapie der Adenokarzinome des Magens und ösophagogastralen Übergangs. Langversion 3.01, 2024, AWMF-Registernummer: 032- 009OL n.d.. Accessed April 28, 2025 at: https://www.leitlinienprogramm-onkologie.de/leitlinien/magenkarzinom/
- 20 Kiryu S, Akai H, Yasaka K. et al. Clinical Impact of Deep Learning Reconstruction in MRI. RadioGraphics 2023; 43: e220133
- 21 Busch F, Hoffmann L, Dos Santos DP. et al. Large language models for structured reporting in radiology: past, present, and future. Eur Radiol 2024; 35: 2589-2602
- 22 Dratsch T, Chen X, Rezazade Mehrizi M. et al. Automation Bias in Mammography: The Impact of Artificial Intelligence BI-RADS Suggestions on Reader Performance. Radiology 2023; 307: e222176
- 23 Adams SJ, Mondal P, Penz E. et al. Development and Cost Analysis of a Lung Nodule Management Strategy Combining Artificial Intelligence and Lung-RADS for Baseline Lung Cancer Screening. Journal of the American College of Radiology 2021; 18: 741-751
- 24 Ziegelmayer S, Graf M, Makowski M. et al. Cost-Effectiveness of Artificial Intelligence Support in Computed Tomography-Based Lung Cancer Screening. Cancers 2022; 14: 1729
- 25 Philipsen RHHM, Sánchez CI, Maduskar P. et al. Automated chest-radiography as a triage for Xpert testing in resource-constrained settings: a prospective study of diagnostic accuracy and costs. Sci Rep 2015; 5: 12215
- 26 Sato M, Kawai M, Nishino Y. et al. Cost-effectiveness analysis for breast cancer screening: double reading versus single + CAD reading. Breast Cancer 2014; 21: 532-541
- 27 Guerriero C, Gillan MG, Cairns J. et al. Is computer aided detection (CAD) cost effective in screening mammography? A model based on the CADET II study. BMC Health Serv Res 2011; 11: 11
- 28 Bashir S, Kik SV, Ruhwald M. et al. Economic analysis of different throughput scenarios and implementation strategies of computer-aided detection software as a screening and triage test for pulmonary TB. PLoS ONE 2022; 17: e0277393
- 29 Killelea BK, Long JB, Chagpar AB. et al. Evolution of Breast Cancer Screening in the Medicare Population: Clinical and Economic Implications. JNCI: Journal of the National Cancer Institute 2014; 106
- 30 Brix MAK, Järvinen J, Bode MK. et al. Financial impact of incorporating deep learning reconstruction into magnetic resonance imaging routine. European Journal of Radiology 2024; 175: 111434
- 31 Ruffle JK, Mohinta S, Baruteau KP. et al. VASARI-auto: Equitable, efficient, and economical featurisation of glioma MRI. NeuroImage: Clinical 2024; 44: 103668
- 32 Roth B, Kampalath R, Nakashima K. et al. Revenue and Cost Analysis of a System Utilizing Natural Language Processing and a Nurse Coordinator for Radiology Follow-up Recommendations. Current Problems in Diagnostic Radiology 2023; 52: 367-371
- 33 Guo Y, Li T, Xie J. et al. Evaluating the accuracy, time and cost of GPT-4 and GPT-4o in liver disease diagnoses using cases from “What is Your Diagnosis.”. Journal of Hepatology 2025; 82: e15-e17
- 34 Liu H, Ding N, Li X. et al. Artificial Intelligence and Radiologist Burnout. JAMA Netw Open 2024; 7: e2448714
- 35 Savardi M, Signoroni A, Benini S. et al. Upskilling or deskilling? Measurable role of an AI-supported training for radiology residents: a lesson from the pandemic. Insights Imaging 2025; 16: 23
- 36 Seng M, Breit H-C, Hehenkamp P. et al. Counting coins in the dark – Austrian, German, and Swiss medical students’ perceptions of radiology. Eur Radiol 2025;
- 37 Li R, Liu G, Zhang M. et al. Integration of artificial intelligence in radiology education: a requirements survey and recommendations from faculty radiologists, residents, and medical students. BMC Med Educ 2025; 25: 380
- 38 Salhöfer L, Haubold J, Gutt M. et al. The importance of educational tools and a new software solution for visualizing and quantifying report correction in radiology training. Sci Rep 2024; 14: 1172
- 39 Tejani AS, Elhalawani H, Moy L. et al. Artificial Intelligence and Radiology Education. Radiol Artif Intell 2023; 5: e220084
- 40 Li MD, Little BP. Appropriate Reliance on Artificial Intelligence in Radiology Education. J Am Coll Radiol 2023; 20: 1126-1130
- 41 Jha S, Topol EJ. Adapting to Artificial Intelligence: Radiologists and Pathologists as Information Specialists. JAMA 2016; 316: 2353
- 42 Geis JR, Brady AP, Wu CC. et al. Ethics of Artificial Intelligence in Radiology: Summary of the Joint European and North American Multisociety Statement. Radiology 2019; 293: 436-440
- 43 Montavon G, Lapuschkin S, Binder A. et al. Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recognition 2017; 65: 211-222
- 44 European Union Artificial Intelligence Act (EU AI Act). 2024 Accessed April 28, 2025 at: https://eur-lex.europa.eu/eli/reg/2024/1689/oj
- 45 Wichtmann BD, Albert S, Zhao W. et al. Are We There Yet? The Value of Deep Learning in a Multicenter Setting for Response Prediction of Locally Advanced Rectal Cancer to Neoadjuvant Chemoradiotherapy. Diagnostics 2022; 12: 1601
- 46 Albert S, Wichtmann BD, Zhao W. et al. Comparison of Image Normalization Methods for Multi-Site Deep Learning. Applied Sciences 2023; 13: 8923
- 47 Khan M, Glavin FG, Nickles M. Federated Learning as a Privacy Solution – An Overview. Procedia Computer Science 2023; 217: 316-325
- 48 Banabilah S, Aloqaily M, Alsayed E. et al. Federated learning review: Fundamentals, enabling technologies, and future applications. Information Processing & Management 2022; 59: 103061
- 49 Rieke N, Hancox J, Li W. et al. The future of digital health with federated learning. Npj Digit. Med 2020; 3: 119
- 50 Kaissis GA, Makowski MR, Rückert D. et al. Secure, privacy-preserving and federated machine learning in medical imaging. Nat Mach Intell 2020; 2: 305-311
- 51 Konečný J, McMahan B, Ramage D. Federated Optimization:Distributed Optimization Beyond the Datacenter. arXiv 2015;
- 52 Busch F, Kather JN, Johner C. et al. Navigating the European Union Artificial Intelligence Act for Healthcare. Npj Digit. Med 2024; 7: 210
- 53 Kotter E, D’Antonoli TA, Cuocolo R. et al. Guiding AI in radiology: ESR’s recommendations for effective implementation of the European AI Act. Insights Imaging 2025; 16: 33