RSS-Feed abonnieren

DOI: 10.1055/a-2531-9798
Nonalternant Extension of Multiple Resonance Emitter via Palladium-Catalyzed [5 + 2]-Annulation
Autoren

Abstract
Despite the proliferation of multiple resonance (MR) emitters with rigid 1,4-azaborine-based skeletons, the straightforward and efficient incorporation of nonhexagonal rings, especially for heptagons remains elusive. Here, a green–yellow emitter consisting of two azepines was designed and synthesized via a palladium-catalyzed one-pot twofold [5 + 2]-annulation reaction with high selectivity and efficiency. The tetrabenzene-fused benzo[1,2-b:5,4-b']bis(azepine) (TBBBA) core induced a highly twisted and dynamically helical rim for the novel MR-skeleton, which reduced π–π stacking in the solid state. Moreover, the nonalternant topology facilitated the delocalization of frontier molecular orbitals (FMO) within the twisted geometry, thus achieving red-shifted narrow emission. Our work provides a new synthetic strategy toward nonalternant extension of MR-emitters and gives insights into the electronic effects of multiple azepination on FMO distribution.
Publikationsverlauf
Eingereicht: 10. Oktober 2024
Angenommen: 27. Dezember 2024
Accepted Manuscript online:
04. Februar 2025
Artikel online veröffentlicht:
10. Juni 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Narita A, Wang X-Y, Feng X, Müllen K. Chem. Soc. Rev. 2015; 44: 6616
- 1b Martín N, Scott LT. Chem. Soc. Rev. 2015; 44: 6397
- 1c Dong H, Fu X, Liu J, Wang Z, Hu W. Adv. Mater. 2013; 25: 6158
- 1d Günes S, Neugebauer H, Sariciftci NS. Chem. Rev. 2007; 107: 1324
- 1e Anthony JE. Chem. Rev. 2006; 106: 5028
- 2a Hatakeyama T, Shiren K, Nakajima K, Nomura S, Nakatsuka S, Kinoshita K, Ni J, Ono Y, Ikuta T. Adv. Mater. 2016; 28: 2777
- 2b Oda S, Hatakeyama T. Bull. Chem. Soc. Jpn. 2021; 94: 950
- 2c Chen C, Du C-Z, Wang X-Y. Adv. Sci. 2022; 9: 2200707
- 2d Ni F, Huang Y, Qiu L, Yang C. Chem. Soc. Rev. 2024; 53: 5904
- 3a Pun SH, Miao Q. Acc. Chem. Res. 2018; 51: 1630
- 3b Chaolumen C, Stepek IA, Yamada KE, Ito H, Itami K. Angew. Chem. Int. Ed. 2021; 60: 23508
- 3c Fernández-García JM, Izquierdo-García P, Buendía M, Filippone S, Martín N. Chem. Commun. 2022; 58: 2634
- 3d Fei Y, Liu J. Adv. Sci. 2022; 9: 2201000
- 3e Luo H, Liu J. Angew. Chem. Int. Ed. 2024; 63: e202410759
- 4a Yang M, Park IS, Yasuda T. J. Am. Chem. Soc. 2020; 142: 19468
- 4b Jiang P, Miao J, Cao X, Xia H, Pan K, Hua T, Lv X, Huang Z, Zou Y, Yang C. Adv. Mater. 2021; 34: 2106954
- 4c Zhang Y, Wei J, Zhang D, Yin C, Li G, Liu Z, Jia X, Qiao J, Duan L. Angew. Chem. Int. Ed. 2022; 61: e202113206
- 4d Qu Y-K, Zhou D-Y, Kong F-C, Zheng Q, Tang X, Zhu Y-H, Huang C-C, Feng Z-Q, Fan J, Adachi C, Liao L-S, Jiang Z-Q. Angew. Chem. Int. Ed. 2022; 61: e202201886
- 5a Lei B, Huang Z, Li S, Liu J, Bin Z, You J. Angew. Chem. Int. Ed. 2023; 62: e202218405
- 5b Mamada M, Aoyama A, Uchida R, Ochi J, Oda S, Kondo Y, Kondo M, Hatakeyama T. Adv. Mater. 2024; 36: 2402905
- 5c Zhuang W, Hung F-F, Che C-M, Liu J. Angew. Chem. Int. Ed. 2024; e202406497
- 6a Hu T, Ye Z, Zhu K, Xu K, Wu Y, Zhang F. Org. Lett. 2020; 22: 505
- 6b Huang L, Tian Y, Ren S, Wang J, Xiao Y, Zhu Q, Li S. Org. Chem. Front. 2022; 9: 6259
- 6c Luo H, Liu J. Angew. Chem. Int. Ed. 2023; 62: e202302761
- 6d Qiu S, Liu J. Organic Materials 2023; 5: 202
- 6e Nishimura Y, Harimoto T, Suzuki T, Ishigaki Y. Chem. Eur. J. 2023; 29: e202301759
- 6f Qiu S, Valdivia AC, Zhuang W, Hung F-F, Che C-M, Casado J, Liu J. J. Am. Chem. Soc. 2024; 146: 16161
- 7 Feofanov M, Akhmetov V, Takayama R, Amsharov K. Org. Biomol. Chem. 2021; 19: 7172
- 8a Budén ME, Vaillard VA, Martin SE, Rossi RA. J. Org. Chem. 2009; 74: 4490
- 8b Chen Y, Tseng S-M, Chang K-H, Chou P-T. J. Am. Chem. Soc. 2022; 144: 1748
- 8c Yamada KE, Stepek IA, Matsuoka W, Ito H, Itami K. Angew. Chem. Int. Ed. 2023; 62: e202311770
- 8d Gan F, Zhang G, Liang J, Shen C, Qiu H. Angew. Chem. Int. Ed. 2024; 63: e202320076
- 8e Wang C, Deng Z, Phillips DL, Liu J. Angew. Chem. Int. Ed. 2023; 62: e202306890
- 9 General procedure: In a nitrogen-filled glovebox, the starting material compound 2 (240 mg, 0.3 mmol), 2-chlorobenzeneboronic acid (190 mg, 1.2 mmol), Pd(PCy3)2Cl2 (22 mg, 10 mol%), and K2CO3 (330 mg, 2.4 mmol) were weighed to a 50 mL Schlenk tube. DMF (10.0 mL) was finally injected via a syringe. The tube was sealed with PTFE cap and removed from the glovebox. The reaction was stirred in an oil bath at 130 °C for 18 hours. After cooling to room temperature, the mixture was extracted with DCM (30 mL × 3). The combined organic phase was dried over Na2SO4. The solvent was removed under vacuum. The mixture was finally purified by column chromatography with a mixed eluent of n-hexane/dichloromethane (v/v = 10: 1–5: 1) to afford compound 1 as a yellow solid (84 mg, 36% yield). 1HNMR (600 MHz, CD2Cl2) δ 8.90 (d, J = 1.9 Hz, 2H), 8.40 (d, J = 1.8 Hz, 2H), 8.06 (d, J = 1.8 Hz, 2H), 7.86 (d, J = 1.9 Hz, 2H), 7.82 (s, 1H), 7.54 (dd, J = 8.0, 1.4 Hz, 2H), 7.43–7.31 (m, 4H), 7.16 (dd, J = 7.8, 1.4 Hz, 2H), 1.66 (s, 18H), 1.58 (s, 18H). 13CNMR (151 MHz, CD2Cl2) δ 147.91, 147.83, 146.28, 142.54, 142.47, 140.75, 139.70, 138.26, 133.87, 130.24, 130.11, 129.43, 128.78, 128.76, 128.22, 124.44, 123.60, 123.48, 121.90, 121.12, 117.07, 35.44, 35.21, 32.21, 31.84.
- 10 Rogge T, Kaplaneris N, Chatani N, Kim J, Chang S, Punji B, Schafer LL, Musaev DG, Wencel-Delord J, Roberts CA, Sarpong R, Wilson ZE, Brimble MA, Johansson MJ, Ackermann L. Nat. Rev. Methods Primers 2021; 1: 43
- 11 Fujise K, Tsurumaki E, Fukuhara G, Hara N, Imai Y, Toyota S. Chem. Asian J. 2020; 15: 2456
- 12 Shimizu A, Morikoshi T, Sugisaki K, Shiomi D, Sato K, Takui T, Shintani R. Angew. Chem. Int. Ed. 2022; 61: e202205729
- 13 Xu Y, Cheng Z, Li Z, Liang B, Wang J, Wei J, Zhang Z, Wang Y. Adv. Opt. Mater. 2020; 8: 1902142