Open Access
CC BY 4.0 · Sustainability & Circularity NOW 2025; 02: a25297304
DOI: 10.1055/a-2529-7304
Sustainable Solvents
Original Article

Toward a Greener Tomorrow: Sustainable Synthesis of Well-defined Polymers in Ionic Liquids via Recyclable Nanocatalyst-Mediated Photopolymerization

Amul Jain
1   Department of Chemistry, Indian Institute of Technology Bhilai, Durg 491002, Chhattisgarh, India
,
Bhanendra Sahu
1   Department of Chemistry, Indian Institute of Technology Bhilai, Durg 491002, Chhattisgarh, India
,
Nikhil Ingale
1   Department of Chemistry, Indian Institute of Technology Bhilai, Durg 491002, Chhattisgarh, India
,
1   Department of Chemistry, Indian Institute of Technology Bhilai, Durg 491002, Chhattisgarh, India
› Author Affiliations

Funding Information The research was funded by a grant received from DRDO, Government of India (ERIP/ER/202311001/M/01/1850).


Preview

Abstract

The widespread use of ionic liquids (ILs) in reversible deactivation radical polymerization (RDRP) procedures has opened new pathways to address the problems caused by hazardous solvents. Additionally, photoinduced RDRP (photoRDRP) of methacrylate monomers in recyclable ILs has been developed, which is catalyzed by magnetic nano zero-valent iron (nZVI), enabling incredible control over M n and Đ s during the polymerization of methyl methacrylate (MMA) by simply turning the UVA radiation (λ max ≈ 352 nm) “ON” and “OFF”. This allows for good temporal control. Furthermore, the chain end fidelity was determined through the synthesis of many distinct diblock copolymers with acceptable Đ s values (≤1.20).

Supplementary Material



Publication History

Received: 06 October 2024

Accepted after revision: 28 January 2025

Accepted Manuscript online:
30 January 2025

Article published online:
17 April 2025

© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

Bibliographical Record
Amul Jain, Bhanendra Sahu, Nikhil Ingale, Sanjib Banerjee. Toward a Greener Tomorrow: Sustainable Synthesis of Well-defined Polymers in Ionic Liquids via Recyclable Nanocatalyst-Mediated Photopolymerization. Sustainability & Circularity NOW 2025; 02: a25297304.
DOI: 10.1055/a-2529-7304
 
  • References

  • 1 Alni A, Cahya AY, Wahyuningrum DJ. K. E. M. KEM 2019; 811: 86-91
  • 2 Welton T. J. Chem. Rev. 1999; 99 (08) 2071-2084
  • 3 Choi H.-J, Selvaraj M, Park D.-W. Chem. Eng. Sci. 2013; 100: 242-248
  • 4 Dai C, Zhang J, Huang C, Lei Z. Chem. Rev. 2017; 117 (10) 6929-6983
  • 5 Yang H, Liu Y, Ning H, Lei J, Hu G. RSC Adv. 2017; 7 (53) 33231-33240
  • 6 Hallett JP, Welton T. Chem. Rev. 2011; 111 (05) 3508-3576
  • 7 Singh A, Kumar Chopra H. Curr. Org. Synth. 2017; 14 (04) 488-510
  • 8 Skoda-Földes R. Molecules 2014; 19 (07) 8840-8884
  • 9 Cabral DM, Howlett PC, MacFarlane DR. Electrochim. Acta 2016; 220: 347-353
  • 10 Pandey S. Anal. Chim. Acta 2006; 556 (01) 38-45
  • 11 Wang R, Gao H, Ye C, Shreeve JN. M. Chem. Mater. 2007; 19 (02) 144-152
  • 12 Corrigan N, Jung K, Moad G, Hawker CJ, Matyjaszewski K, Boyer C. Prog. Polym. Sci. 2020; 111: 101311
  • 13 Stuart MA. C, Huck WT, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M. Nat. Mater 2010; 9 (02) 101-113
  • 14 Wei M, Gao Y, Li X, Serpe MJ. Polym. Chem. 2017; 8 (01) 127-143
  • 15 Ouchi M, Badi N, Lutz J.-F, Sawamoto M. Nat. Chem. 2011; 3 (12) 917-924
  • 16 Matyjaszewski K. J. Macromol. 2012; 45 (10) 4015-4039
  • 17 Lligadas G, Grama S, Percec V. J. Biol. Macromol. 2017; 18 (10) 2981-3008
  • 18 Nicolas J, Guillaneuf Y, Lefay C, Bertin D, Gigmes D, Charleux B. Prog. Polym. Sci. 2013; 38 (01) 63-235
  • 19 Hill MR, Carmean RN, Sumerlin BS. J Macromol. 2015; 48 (16) 5459-5469
  • 20 Morin AN, Detrembleur C, Jérôme C, De Tullio P, Poli R, Debuigne A. J. Macromol. 2013; 46 (11) 4303-4312
  • 21 Wang W, Zhao J, Zhou N, Zhu J, Zhang W, Pan X, Zhang Z, Zhu X. Polym. Chem. 2014; 5 (11) 3533-3546
  • 22 Zhou H, Zhang L, Wen P, Zhou Y, Zhao Y, Zhao Q, Gu Y, Bai R, Chen M. Angew. Chem. 2023; 135 (27) e202304461
  • 23 Tian C, Wang P, Ni Y, Zhang L, Cheng Z, Zhu X. Angew. Chem., Int. Ed. 2020; 59 (10) 3910-3916
  • 24 Bagheri A, Jin J. ACS Appl. Polym. Mater. 2019; 1 (04) 593-611
  • 25 Magenau AJ, Strandwitz NC, Gennaro A, Matyjaszewski K. J. Sci. 2011; 332 (6025) 81-84
  • 26 Rzayev J, Penelle J. Angew. Chem., Int. Ed. 2004; 116 (13) 1723-1726
  • 27 Dworakowska S, Lorandi F, Gorczyński A, Matyjaszewski K. J. Adv. Sci. 2022; 9 (19) 2106076
  • 28 Dadashi-Silab S, Pan X, Matyjaszewski K. J. Macromol. 2017; 50 (20) 7967-7977
  • 29 Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen T.-K, Adnan NN. M, Oliver S, Shanmugam S, Yeow J. Chem. Rev. 2016; 116 (04) 1803-1949
  • 30 Wang Y. J. Polym. 2019; 11 (08) 1238
  • 31 Parkatzidis K, de Haro Amez L, Truong NP, Anastasaki A. J. Polym. Chem. 2023; 14 (14) 1639-1645
  • 32 Egorova KS, Gordeev EG, Ananikov VP. Chem. Rev. 2017; 117 (10) 7132-7189
  • 33 Sahu B, Sinha P, Kumar D, Patel K, Banerjee S. Macromol. Rapid Commun. 2024; 45 (03) 2300500
  • 34 Kumar D, Sahu B, Dolui S, Rajput SS, Alam MM, Banerjee S. Eur. Polym. J. 2023; 199: 112443
  • 35 Dinda E, Si S, Kotal A, Mandal TK. J. C. A. E. J. Chem. – Eur. J. 2008; 14 (18) 5528-5537
  • 36 Sahu B, Sinha P, Mishra B, Tripathi BP, Banerjee S. ACS Appl. Polym. Mater.. 2024
  • 37 Flores JD, Treat NJ, York AW, McCormick CL. Polym. Chem. 2011; 2 (09) 1976-1985
  • 38 Heatley F, Bovey F. Macromolecules 1969; 2 (03) 241-245
  • 39 Karabelli D, Üzüm CA. R, Shahwan T, Eroglu AE, Scott TB, Hallam KR, Lieberwirth IJ. I, Research EC. Ind. Eng. Chem. Res. 2008; 47 (14) 4758-4764