RSS-Feed abonnieren

DOI: 10.1055/a-2520-3833
Application of Artificial Intelligence and Computational Biology in Protein Drug Development
Autor*innen
Funding This work was financially supported by the Natural Science Foundation of China (Grant No. 32171246), the Shanghai Municipal Government Science Innovation (Grant No. 21JC1403700), and the Natural Science Foundation of China (Grant No. 31971187).
Abstract
Protein drugs have evolved into a primary category of biological drugs. Despite the impressive achievements, protein therapeutics still face several challenges, including potential immunogenicity, druggability, and high costs. In recent years, artificial intelligence (AI) and computational biology have emerged as powerful tools to overcome these challenges and reshape the protein drug development pipeline. This review underscores the pivotal role of AI in advancing protein drug development, including the computational analysis of phage libraries, the application of computer-aided techniques for new phage display systems, and the computational optimization and design of novel antibody–drug conjugates, nanobodies, and cytokines. The review delves into the use of AI in predicting the pharmacological properties of these protein therapeutics, providing a comprehensive overview of the transformative impact of computational approaches in these areas.
Keywords
artificial intelligence - computational biology - protein drug - phage display - nanobodies - cytokines# These authors contributed equally to this work.
Publikationsverlauf
Eingereicht: 13. Februar 2024
Angenommen: 20. Januar 2025
Artikel online veröffentlicht:
06. März 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Banting FG, Best CH, Collip JB, Campbell WR, Fletcher AA. Pancreatic extracts in the treatment of diabetes mellitus. Can Med Assoc J 1922; 12 (03) 141-146
- 2 Clark AJ, Adeniyi-Jones RO, Knight G. et al. Biosynthetic human insulin in the treatment of diabetes. A double-blind crossover trial in established diabetic patients. Lancet 1982; 2 (8294): 354-357
- 3 Richter B, Neises G. 'Human' insulin versus animal insulin in people with diabetes mellitus. Cochrane Database Syst Rev 2003; (03) CD003816
- 4 Haase M. Human recombinant factor IX: safety and efficacy studies in hemophilia B patients previously treated with plasma-derived factor IX concentrates. Blood 2002; 100 (12) 4242 , author reply 4242–4243
- 5 Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R. SAFE Study Investigators. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 2004; 350 (22) 2247-2256
- 6 Quattrin T, Bélanger A, Bohannon NJ, Schwartz SL. Exubera Phase III Study Group. Efficacy and safety of inhaled insulin (Exubera) compared with subcutaneous insulin therapy in patients with type 1 diabetes: results of a 6-month, randomized, comparative trial. Diabetes Care 2004; 27 (11) 2622-2627
- 7 Farasati Far B, Safaei M, Mokhtari F, Fallahi MS, Naimi-Jamal MR. Fundamental concepts of protein therapeutics and spacing in oncology: an updated comprehensive review. Med Oncol 2023; 40 (06) 166
- 8 Wahid M, Jawed A, Mandal RK. et al. Recent developments and obstacles in the treatment of melanoma with BRAF and MEK inhibitors. Crit Rev Oncol Hematol 2018; 125: 84-88
- 9 Frokjaer S, Otzen DE. Protein drug stability: a formulation challenge. Nat Rev Drug Discov 2005; 4 (04) 298-306
- 10 Zhang P, Sun F, Tsao C. et al. Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity. Proc Natl Acad Sci U S A 2015; 112 (39) 12046-12051
- 11 Huang S, Yang J, Fong S, Zhao Q. Artificial intelligence in cancer diagnosis and prognosis: opportunities and challenges. Cancer Lett 2020; 471: 61-71
- 12 Huang S, Yang J, Fong S, Zhao Q. Artificial intelligence in the diagnosis of COVID-19: challenges and perspectives. Int J Biol Sci 2021; 17 (06) 1581-1587
- 13 Jumper J, Evans R, Pritzel A. et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021; 596 (7873): 583-589
- 14 Bryant P, Elofsson A. EvoBind: in silico directed evolution of peptide binders with AlphaFold. bioRxiv Preprint. July 23, 2022.
- 15 Watson JL, Juergens D, Bennett NR. et al. De novo design of protein structure and function with RF diffusion. Nature 2023; 620 (7976): 1089-1100
- 16 Rives A, Meier J, Sercu T. et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc Natl Acad Sci U S A 2021; 118 (15) e2016239118
- 17 Yang J, Zhu X, Xu X, Sun Q. Recent knowledge in phages, phage-encoded endolysin, and phage encapsulation against foodborne pathogens. Crit Rev Food Sci Nutr 2024; 64 (32) 12040-12060
- 18 Hampton HG, Watson BNJ, Fineran PC. The arms race between bacteria and their phage foes. Nature 2020; 577 (7790): 327-336
- 19 Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985; 228 (4705): 1315-1317
- 20 Hoogenboom HR, Griffiths AD, Johnson KS, Chiswell DJ, Hudson P, Winter G. Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res 1991; 19 (15) 4133-4137
- 21 Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G. By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 1991; 222 (03) 581-597
- 22 Waterhouse P, Griffiths AD, Johnson KS, Winter G. Combinatorial infection and in vivo recombination: a strategy for making large phage antibody repertoires. Nucleic Acids Res 1993; 21 (09) 2265-2266
- 23 Pande J, Szewczyk MM, Grover AK. Phage display: concept, innovations, applications and future. Biotechnol Adv 2010; 28 (06) 849-858
- 24 Hsiung PL, Hardy J, Friedland S. et al. Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat Med 2008; 14 (04) 454-458
- 25 O'Rourke JP, Daly SM, Triplett KD, Peabody D, Chackerian B, Hall PR. Development of a mimotope vaccine targeting the Staphylococcus aureus quorum sensing pathway. PLoS One 2014; 9 (11) e111198
- 26 Olivieri I, D'Angelo S, Palazzi C, Padula A. Advances in the management of psoriatic arthritis. Nat Rev Rheumatol 2014; 10 (09) 531-542
- 27 Yang AS. Development of romiplostim: a novel engineered peptibody. Semin Hematol 2015; 52 (01) 12-15
- 28 Barderas R, Benito-Peña E. The 2018 Nobel Prize in chemistry: phage display of peptides and antibodies. Anal Bioanal Chem 2019; 411 (12) 2475-2479
- 29 Nami Y, Imeni N, Panahi B. Application of machine learning in bacteriophage research. BMC Microbiol 2021; 21 (01) 193
- 30 Ito T, Nguyen TD, Saito Y. et al. Selection of target-binding proteins from the information of weakly enriched phage display libraries by deep sequencing and machine learning. MAbs 2023; 15 (01) 2168470
- 31 Matochko WL, Chu K, Jin B, Lee SW, Whitesides GM, Derda R. Deep sequencing analysis of phage libraries using Illumina platform. Methods 2012; 58 (01) 47-55
- 32 Matochko WL, Derda R. Next-generation sequencing of phage-displayed peptide libraries. Methods Mol Biol 2015; 1248: 249-266
- 33 Hogan DJ. Applications of machine learning for predicting selection outcomes in antibody phage display [Master's thesis]. Saskatoon, Saskatchewan: University of Saskatchewan Saskatoon; 2016
- 34 Saksena SD, Liu G, Banholzer C, Horny G, Ewert S, Gifford DK. Computational counterselection identifies nonspecific therapeutic biologic candidates. Cell Rep Methods 2022; 2 (07) 100254
- 35 Esvelt KM, Carlson JC, Liu DR. A system for the continuous directed evolution of biomolecules. Nature 2011; 472 (7344): 499-503
- 36 Hu JH, Miller SM, Geurts MH. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 2018; 556 (7699): 57-63
- 37 Philpott DN, Gomis S, Wang H. et al. Rapid on-cell selection of high-performance human antibodies. ACS Cent Sci 2022; 8 (01) 102-109
- 38 Reyes-Ruiz JM, Nakajima R, Baghallab I. et al. An “epitomic” analysis of the specificity of conformation-dependent, anti-Aß amyloid monoclonal antibodies. J Biol Chem 2021; 296: 100168
- 39 Su Y, Zeng X, Zhang L, Bian Y, Wang Y, Ma B. ABTrans: a transformer-based model for predicting interaction between anti-A? antibodies and peptides. Interdiscip Sci 2025; 17 (01) 140-152
- 40 Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat Rev Clin Oncol 2021; 18 (06) 327-344
- 41 Kuwatani M, Sakamoto N. Promising highly targeted therapies for cholangiocarcinoma: a review and future perspectives. Cancers (Basel) 2023; 15 (14) 3686
- 42 Hafeez U, Parakh S, Gan HK, Scott AM. Antibody-drug conjugates for cancer therapy. Molecules 2020; 25 (20) 4764
- 43 Agarwal P, Bertozzi CR. Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug Chem 2015; 26 (02) 176-192
- 44 Ducry L, Stump B. Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem 2010; 21 (01) 5-13
- 45 Perez HL, Cardarelli PM, Deshpande S. et al. Antibody-drug conjugates: current status and future directions. Drug Discov Today 2014; 19 (07) 869-881
- 46 Shefet-Carasso L, Benhar I. Antibody-targeted drugs and drug resistance–challenges and solutions. Drug Resist Updat 2015; 18: 36-46
- 47 Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther 2022; 7 (01) 93
- 48 Senter PD. Potent antibody drug conjugates for cancer therapy. Curr Opin Chem Biol 2009; 13 (03) 235-244
- 49 Dragovich PS. Degrader-antibody conjugates. Chem Soc Rev 2022; 51 (10) 3886-3897
- 50 Hong KB, An H. Degrader-antibody conjugates: emerging new modality. J Med Chem 2023; 66 (01) 140-148
- 51 Poudel YB, Thakore RR, Chekler EP. The New Frontier: merging molecular glue degrader and antibody-drug conjugate modalities to overcome strategic challenges. J Med Chem 2024; 67 (18) 15996-16001
- 52 Guo Y, Li X, Xie Y, Wang Y. What influences the activity of degrader-antibody conjugates (DACs). Eur J Med Chem 2024; 268: 116216
- 53 Nakazawa Y, Miyano M, Tsukamoto S. et al. Delivery of a BET protein degrader via a CEACAM6-targeted antibody-drug conjugate inhibits tumour growth in pancreatic cancer models. Nat Commun 2024; 15 (01) 2192
- 54 Pal Singh S, Dammeijer F, Hendriks RW. Role of Bruton's tyrosine kinase in B cells and malignancies. Mol Cancer 2018; 17 (01) 57
- 55 Hock MB, Thudium KE, Carrasco-Triguero M, Schwabe NF. Immunogenicity of antibody drug conjugates: bioanalytical methods and monitoring strategy for a novel therapeutic modality. AAPS J 2015; 17 (01) 35-43
- 56 Melo R, Lemos A, Preto AJ. et al. Computational approaches in antibody-drug conjugate optimization for targeted cancer therapy. Curr Top Med Chem 2018; 18 (13) 1091-1109
- 57 Bredel M, Jacoby E. Chemogenomics: an emerging strategy for rapid target and drug discovery. Nat Rev Genet 2004; 5 (04) 262-275
- 58 Singh AP, Shin YG, Shah DK. Application of pharmacokinetic-pharmacodynamic modeling and simulation for antibody-drug conjugate development. Pharm Res 2015; 32 (11) 3508-3525
- 59 Yang Y, Adelstein SJ, Kassis AI. Target discovery from data mining approaches. Drug Discov Today 2009; 14 (3-4): 147-154
- 60 Fauteux F, Hill JJ, Jaramillo ML. et al. Computational selection of antibody-drug conjugate targets for breast cancer. Oncotarget 2016; 7 (03) 2555-2571
- 61 Shah DK, Haddish-Berhane N, Betts A. Bench to bedside translation of antibody drug conjugates using a multiscale mechanistic PK/PD model: a case study with brentuximab-vedotin. J Pharmacokinet Pharmacodyn 2012; 39 (06) 643-659
- 62 Kim MT, Chen Y, Marhoul J, Jacobson F. Statistical modeling of the drug load distribution on trastuzumab emtansine (Kadcyla), a lysine-linked antibody drug conjugate. Bioconjug Chem 2014; 25 (07) 1223-1232
- 63 Srivastava R. Computational studies on antibody drug conjugates (ADCs) for precision oncology. ChemistrySelect 2022; 7 (34) e202202259
- 64 Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem 2013; 82: 775-797
- 65 Salvador JP, Vilaplana L, Marco MP. Nanobody: outstanding features for diagnostic and therapeutic applications. Anal Bioanal Chem 2019; 411 (09) 1703-1713
- 66 Massa S, Xavier C, De Vos J. et al. Site-specific labeling of cysteine-tagged camelid single-domain antibody-fragments for use in molecular imaging. Bioconjug Chem 2014; 25 (05) 979-988
- 67 Bao C, Gao Q, Li LL. et al. The application of nanobody in CAR-T therapy. Biomolecules 2021; 11 (02) 238
- 68 Wu Y, Li Q, Kong Y. et al. A highly stable human single-domain antibody-drug conjugate exhibits superior penetration and treatment of solid tumors. Mol Ther 2022; 30 (08) 2785-2799
- 69 Fan J, Zhuang X, Yang X. et al. A multivalent biparatopic EGFR-targeting nanobody drug conjugate displays potent anticancer activity in solid tumor models. Signal Transduct Target Ther 2021; 6 (01) 320
- 70 Shin JE, Riesselman AJ, Kollasch AW. et al. Protein design and variant prediction using autoregressive generative models. Nat Commun 2021; 12 (01) 2403
- 71 Olimpieri PP, Marcatili P, Tramontano A. Tabhu: tools for antibody humanization. Bioinformatics 2015; 31 (03) 434-435
- 72 Choi Y. Artificial intelligence for antibody reading comprehension: antiBERTa. Patterns (N Y) 2022; 3 (07) 100535
- 73 Prihoda D, Maamary J, Waight A. et al. BioPhi: a platform for antibody design, humanization, and humanness evaluation based on natural antibody repertoires and deep learning. MAbs 2022; 14 (01) 2020203
- 74 Martins C, Diharce J, Nadaradjane AA, de Brevern AG. Evaluation of the potential impact of in silico humanization on VHH dynamics. Int J Mol Sci 2023; 24 (19) 14586
- 75 Mason DM, Friedensohn S, Weber CR. et al. Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning. Nat Biomed Eng 2021; 5 (06) 600-612
- 76 Eguchi RR, Choe CA, Huang PS. Ig-VAE: generative modeling of protein structure by direct 3D coordinate generation. PLoS Comput Biol 2022; 18 (06) e1010271
- 77 Cohen T, Halfon M, Schneidman-Duhovny D. NanoNet: rapid and accurate end-to-end nanobody modeling by deep learning. Front Immunol 2022; 13: 958584
- 78 Iozzo Y, Qiu Y, Xu A, Park A, Wendt M, Zhou YF. Development of an integrated structural biology platform specialized for sub-100 kDa protein complexes to support biologics discovery and rational engineering. Antib Ther 2021; 4 (04) 242-251
- 79 Wu D, Cong J, Wei J. et al. A naïve phage display library-derived nanobody neutralizes SARS-CoV-2 and three variants of concern. Int J Nanomedicine 2023; 18: 5781-5795
- 80 Yang X, Sun Z, He Z, Xie X, Liu X. Combination of nanobody and peptidomimetic to develop novel immunoassay platforms for detecting ochratoxin A in cereals. Food Chem 2023; 429: 137018
- 81 Li JD, Shen X, Xu ZL. et al. Molecular evolution of antiparathion nanobody with enhanced sensitivity and specificity based on structural analysis. J Agric Food Chem 2023; 71 (40) 14758-14768
- 82 Li M, Ren Y, Aw ZQ. et al. Broadly neutralizing and protective nanobodies against SARS-CoV-2 omicron subvariants BA.1, BA.2, and BA.4/5 and diverse sarbecoviruses. Nat Commun 2022; 13 (01) 7957
- 83 Deckers J, Anbergen T, Hokke AM. et al. Engineering cytokine therapeutics. Nat Rev Bioeng 2023; 1 (04) 286-303
- 84 Dougan M, Ingram JR, Jeong HJ. et al. Targeting cytokine therapy to the pancreatic tumor microenvironment using PD-L1-specific VHHs. Cancer Immunol Res 2018; 6 (04) 389-401
- 85 Mendoza JL, Escalante NK, Jude KM. et al. Structure of the IFNγ receptor complex guides design of biased agonists. Nature 2019; 567 (7746) 56-60
- 86 Gorby C, Sotolongo Bellón J, Wilmes S. et al. Engineered IL-10 variants elicit potent immunomodulatory effects at low ligand doses. Sci Signal 2020; 13 (649) eabc0653
- 87 Zheng X, Wu Y, Bi J. et al. The use of supercytokines, immunocytokines, engager cytokines, and other synthetic cytokines in immunotherapy. Cell Mol Immunol 2022; 19 (02) 192-209
- 88 Quijano-Rubio A, Ulge UY, Walkey CD, Silva DA. The advent of de novo proteins for cancer immunotherapy. Curr Opin Chem Biol 2020; 56: 119-128
- 89 Silva DA, Yu S, Ulge UY. et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature 2019; 565 (7738): 186-191
- 90 Rautio J, Kumpulainen H, Heimbach T. et al. Prodrugs: design and clinical applications. Nat Rev Drug Discov 2008; 7 (03) 255-270
- 91 Hsu EJ, Cao X, Moon B. et al. A cytokine receptor-masked IL2 prodrug selectively activates tumor-infiltrating lymphocytes for potent antitumor therapy. Nat Commun 2021; 12 (01) 2768
- 92 Rautio J, Meanwell NA, Di L, Hageman MJ. The expanding role of prodrugs in contemporary drug design and development. Nat Rev Drug Discov 2018; 17 (08) 559-587
- 93 Rosen DB, Kvarnhammar AM, Laufer B. et al. TransCon IL-2 β/γ: a novel long-acting prodrug with sustained release of an IL-2Rβ/γ-selective IL-2 variant with improved pharmacokinetics and potent activation of cytotoxic immune cells for the treatment of cancer. J Immunother Cancer 2022; 10 (07) e004991
- 94 Yang H, Ulge UY, Quijano-Rubio A. et al. Design of cell-type-specific hyperstable IL-4 mimetics via modular de novo scaffolds. Nat Chem Biol 2023; 19 (09) 1127-1137
- 95 Wong F, de la Fuente-Nunez C, Collins JJ. Leveraging artificial intelligence in the fight against infectious diseases. Science 2023; 381 (6654): 164-170
- 96 Bi WL, Hosny A, Schabath MB. et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin 2019; 69 (02) 127-157
