Subscribe to RSS

DOI: 10.1055/a-2515-6076
Exploring Ionic Liquid-Based Liquid–Liquid Extraction as a Benign Alternative for Sustainable Wastewater Treatment
Funding Information The authors would like to acknowledge funds from the International Cooperation Division, Department of Science and Technology (DST), India, through project DST/INT/Portugal/P-10/2021.

Abstract
The uncontrolled release of industrial effluents containing micropollutants (MPs), dyes, and heavy metal ions contaminates natural water bodies posing threats to health and the environment. Conventional treatment methods often struggle with challenges such as prolonged processing time, low specificity, and risk of producing secondary pollutants. Liquid–liquid extraction (LLE) technique utilizing ionic liquids (ILs) has emerged as a viable alternative for the elimination of contaminants from wastewater. ILs, characterized by minimal volatility and tunable physicochemical properties, facilitate the precise elimination of contaminants from industrial effluent. IL-LLE streamlines the experimental setup, lowers energy consumption, promotes recyclability for reuse, enhances mechanistic understanding, and hence provides a sustainable alternative to industrial effluent treatment. This review provides a comprehensive analysis of IL-LLE approaches for wastewater treatment, commencing with an overview of the historical evolution of ILs, tracing their progression from initial research to contemporary and advanced applications. The article primarily examines the practical applications of IL-LLE, demonstrating how these approaches are employed to efficiently remove diverse contaminants from both simulated and actual industrial wastewater samples. As a whole, the review consolidates the versatility and efficiency of IL-based LLE in addressing various challenges in wastewater treatment.
Keywords
Ionic liquid - Wastewater - Liquid–liquid extraction - Micropollutants - Dyes - Heavy metals - ReuseDeclaration of Generative AI in Scientific Writing
During the preparation of this research work, ChatGPT was used to improve the readability and language of the manuscript. After using this tool/service, the authors reviewed and edited the content as required and took full responsibility for the publication.
Publication History
Received: 04 November 2024
Accepted after revision: 10 January 2025
Accepted Manuscript online:
13 January 2025
Article published online:
29 January 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
Sachind Prabha Padinhattath, M. Shaibuna, Ramesh L. Gardas. Exploring Ionic Liquid-Based Liquid–Liquid Extraction as a Benign Alternative for Sustainable Wastewater Treatment. Sustainability & Circularity NOW 2025; 02: a25156076.
DOI: 10.1055/a-2515-6076
-
References
- 1 Theodorou P. The Effects of Urbanisation on Ecological Interactions. Curr. Opin. Insect Sci. 2022; 52 100922
- 2 Shaibuna M, Padinhattath SP, Gardas RL. Efficient removal of multiple heavy metal ions from wastewater using task-specific hydrophobic deep eutectic solvents: A circular approach. J. Mol. Liqu. 2024; 416 126487
- 3 Zenker A, Cicero MR, Prestinaci F, Bottoni P, Carere M. Bioaccumulation and Biomagnification Potential of Pharmaceuticals with a Focus to the Aquatic Environment. J. Environ. Manage. 2014; 133: 378-387
- 4 Padinhattath SP, Panneer SV. K, Subramanian V, Gardas RL. Effective removal of personal care product residues from aqueous media using hydrophobic deep eutectic solvents: Experimental and computational approach. Microchem. J. 2024; 197 109891
- 5 Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S. Chemical Treatment Technologies for Waste-Water Recycling – An Overview. RSC Adv. 2012; 2: 6380-6388
- 6 Wang J, Chen H. Catalytic Ozonation for Water and Wastewater Treatment: Recent Advances and Perspective. Sci. Total Environ. 2020; 704 135249
- 7 Hube S, Eskafi M, Hrafnkelsdóttir KF, Bjarnadóttir B, Bjarnadóttir MÁ, Axelsdóttir S, Wu B. Direct Membrane Filtration for Wastewater Treatment and Resource Recovery: A Review. Sci. the Total Environ 2020; 710 136375
- 8 Zieliński M, Kazimierowicz J, Dębowski M. Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations. Energies 2023; 16: 83
- 9 Bokhary A, Leitch M, Liao BQ. Liquid–Liquid Extraction Technology for Resource Recovery: Applications, Potential, and Perspectives. J. Water Process Eng. 2021; 40 101762
- 10 Hall DW, Sandrin JA, Mcbride RE. An Overview of Solvent Extraction Treatment Technologies. Environ. Prog. 1990; 9: 98-105
- 11 Priyanka VP, Harikrishna AS, Kesavan V, Gardas RL. Synergistic Interaction and Antibacterial Properties of Surface-Active Mono- and Di-Cationic Ionic Liquids with Ciprofloxacin. J. Mol. Liq. 2024; 399 124359
- 12 Keshapolla D, Devunuri N, Ijardar SP, Gardas RL. Influence of Anion Structure on Volumetric Properties of Dilute Binary Systems Containing Carboxylate Functioned Trihexylammonium Ionic Liquids in Toluene / Dodecane. J. Mol. Liq. 2023; 391 123252
- 13 Shaibuna M, Hiba K, Shebitha AM, Kariyottu Kuniyil MJ, Sherly mole PB, Sreekumar K. Sustainable and Selective Synthesis of Benzimidazole Scaffolds Using Deep Eutectic Solvents. Current Research in Green and Sustainable. Chemistry 2022; 5 100285
- 14 Shaibuna M, Hiba K, Sreekumar K. Deep Eutectic Solvent for the Synthesis of (E)-Nitroalkene via Microwave Assisted Henry Reaction. Curr. Res. Green Sustainable Chemistry 2021; 4 100187
- 15 Shaibuna M, Sreekumar K. Experimental Investigation on the Correlation between the Physicochemical Properties and Catalytic Activity of Six DESs in the Kabachnik-Fields Reaction. ChemistrySelect 2020; 5: 13454-13460
- 16 Chenthamara B, Gardas RL. Beyond the Conventional Leaching: Exploring Pyruvic Acid-Based Deep Eutectic Solvents for Sustainable Recycling of Spent Lithium-Ion Battery Cathode Material. ACS Sustainable Chem. Eng. 2024; 12: 12827-12836
- 17 Dash BR, Gardas RL, Mishra AK. Probing the Heterogeneity of Molecular Level Organization of Ionic Liquids: A Comparative Study Using Neutral Nile Red and Cationic Nile Blue Sulfate as Fluorescent Probes for Butyrolactam-Based Protic Ionic Liquids. Phys. Chem. Chem. Phys. 2024; 26: 13350-13363
- 18 Jisha KJ, Gardas RL. Exploring the structural stability of hemoglobin in DBU-based ionic liquids: Insights from spectroscopic investigations. J. Mol. Liq. 2023; 388 122837
- 19 Athira KK, Mepperi J, Chandra Kotamarthi H, Gardas RL. Ionic Liquid–Based Aqueous Biphasic System as an Alternative Tool for Enhanced Bacterial DNA Extraction. Anal. Chim. Acta 2024; 1321 343045,
- 20 Shaibuna M, Kuniyil MJ. K, Sreekumar K. Deep Eutectic Solvent Assisted Synthesis of Dihydropyrimidinones/ThionesviaBiginelli Reaction: Theoretical Investigations on Their Electronic and Global Reactivity Descriptors. New J. Chem. 2021; 45 (44) 20765-20775
- 21 Al Hassan MK, Alfarsi A, Nasser MS, Hussein IA, Khan I. Ionic Liquids and NADES for Removal of Organic Pollutants and Heavy Metals in Wastewater: A Comprehensive Review. J. Mol. Liq. 2023; 391 123163
- 22 Padinhattath SP, Chenthamara B, Gardas RL. Ionic Liquids as Alternative Solvents for Energy Conservation and Environmental Engineering. Acta Innov. 2021; 38: 62-79
- 23 Fesliyan S, Maslov MM, Sanaullah. Altunay N, Kaya S. Investigation of Magnetic Ionic Liquids for Selective and Rapid Extraction of Gallic Acid from Complex Samples Using Experimental, Statistical Modeling and Density Functional Theory Studies. Food Chem. 2024; 460 140516
- 24 Khan HW, Zailan AA, Bhaskar Reddy AV, Goto M, Moniruzzaman M. Ionic Liquid-Based Dispersive Liquid–Liquid Microextraction of Succinic Acid from Aqueous Streams: COSMO-RS Screening and Experimental Verification. Environ. Technol. 2024; 45: 3828-3839
- 25 Yu L, Li Z, Huang W, Ali A, Chen Y, Zhao G, Yao S. Recovery and Post-Treatment Processes for Ionic Liquids and Deep Eutectic Solvents. J. Mol. Liq. 2024; 402 124767
- 26 Singh SK, Savoy AW. Ionic Liquids Synthesis and Applications: An Overview. J. Mol. Liq. 2020; 297 112038
- 27 Austen Angell C, Ansari Y, Zhao Z. Ionic Liquids: Past, Present and Future. Faraday Discuss. 2012; 154: 9-27
- 28 Jorge M.S.A, Athira K.K, Alves M.B, Gardas R.L. Textile dyes effluents: A current scenario and the use of aqueous biphasic systems for the recovery of dyes. J. Water Process Eng. 2023; 55 104125
- 29 Walden P. About the molecular size and electrical conductivity of some molten salts. Bull. Acad. Impér. Sci. 1914; 8: 405-422
- 30 Hurley FH, WIer TP. Electrodeposition of Metals from Fused Quaternary Ammonium Salts. J. Electrochem. Soc. 1951; 98: 203-206
- 31 Welton T. Ionic Liquids: A Brief History. Biophys. Rev. 2018; 10: 691-706
- 32 Wilkes JS, Zaworotko MJ. Air and Water Stable I-Ethyl-3-Methylimidazolium Based Ionic Liquids. J. Chem. Soc., Chem. Commun. 1992; 965-967
- 33 Giernoth R. Task-Specific Ionic Liquids. Angew. Chem., Int. Edi. 2010; 49: 2834-2839
- 34 Llaver M, Fiorentini EF, Quintas PY, Oviedo MN, Botella Arenas MB, Wuilloud RG. Task-Specific Ionic Liquids: Applications in Sample Preparation and the Chemistry behind Their Selectivity. Adv. Sample Prep. 2022; 1 100004
- 35 MacFarlane DR, Chong AL, Forsyth M, Kar M, Vijayaraghavan R, Somers A, Pringle JM. New Dimensions in Salt-Solvent Mixtures: A 4th Evolution of Ionic Liquids. Faraday Discuss. 2018; 206: 9-28
- 36 Angell CA, Byrne N, Belieres JP. Parallel Developments in Aprotic and Protic Ionic Liquids: Physical Chemistry and Applications. Acc. Chem. Res. 2007; 40: 1228-1236
- 37 Esperança JM. S. S, Lopes JN. C, Tariq M, Santos LM. N. B. F, Magee JW, Rebelo LP. N. Volatility of Aprotic Ionic Liquids-A Review. J. Chem. Eng. Data 2010; 55: 3-12
- 38 Greaves TL, Drummond CJ. Protic Ionic Liquids: Properties and Applications. Chem. Rev. 2008; 108: 206-237
- 39 Bailey J, Byrne EL, Goodrich P, Kavanagh P, Swadźba-Kwaśny M. Protic Ionic Liquids for Sustainable Uses. Green Chem. 2023; 26: 1092-1131
- 40 Doi H, Song X, Minofar B, Kanzaki R, Takamuku T, Umebayashi Y. A New Proton Conductive Liquid with No Ions: Pseudo-Protic Ionic Liquids. Chem. – Eur. J. 2013; 19: 11522-11526
- 41 Watanabe H, Umecky T, Arai N, Nazet A, Takamuku T, Harris KR, Kameda Y, Buchner R, Umebayashi Y. Possible Proton Conduction Mechanism in Pseudo-Protic Ionic Liquids: A Concept of Specific Proton Conduction. J. Phys. Chem. B 2019; 123: 6244-6252
- 42 Watanabe H, Arai N, Jihae H, Kawana Y, Umebayashi Y. Ionic Conduction within Non-Stoichiometric N-Methylimidazole-Acetic Acid Pseudo-Protic Ionic Liquid Mixtures. J. Mol. Liq. 2022; 352 118705
- 43 Abe H, Ohkubo T, Miike T. PH Variation in Protic and Pseudo-Protic Ionic Liquid–Water Solutions. Results Chem. 2023; 6 101045
- 44 Santos E, Albo J, Irabien A. Magnetic Ionic Liquids: Synthesis, Properties and Applications. RSC Adv. 2014; 4: 40008-40018
- 45 Hayashi S, Hamaguchi HO. Discovery of a Magnetic Ionic Liquid [Bmim]FeCl4 . Chem. Lett. 2004; 33: 1590-1591
- 46 Clark KD, Nacham O, Purslow JA, Pierson SA, Anderson JL. Magnetic Ionic Liquids in Analytical Chemistry: A Review. Anal. Chim. Acta 2016; 934: 9-21
- 47 Sajid M. Magnetic Ionic Liquids in Analytical Sample Preparation: A Literature Review. TrAC, Trends Anal. Chem. 2019; 113: 210-223
- 48 dos Santos AD, Morais AR. C, Melo C, Bogel-Łukasik R, Bogel-Łukasik E. Solubility of Pharmaceutical Compounds in Ionic Liquids. Fluid Phase Equilib. 2013; 356: 18-29
- 49 Smith KB, Bridson RH, Leeke GA. Solubilities of Pharmaceutical Compounds in Ionic Liquids. J. Chem. Eng. Data 2011; 56: 2039-2043
- 50 Jisha KJ, Rajamani S, Singh D, Sharma G, Gardas RL. A Comparative Study of Ionothermal Treatment of Rice Straw Using Triflate and Acetate-Based Ionic Liquids. J. Ion. Liq. 2022; 2 100037
- 51 Tadesse H, Luque R. Advances on Biomass Pretreatment Using Ionic Liquids: An Overview. Energy Environ. Sci. 2011; 4: 3913-3929
- 52 Ocreto JB, Chen WH, Rollon AP, Chyuan Ong H, Pétrissans A, Pétrissans M, De Luna MD. G. Ionic Liquid Dissolution Utilized for Biomass Conversion into Biofuels, Value-Added Chemicals and Advanced Materials: A Comprehensive Review. Chem. Eng. J. 2022; 445 136733
- 53 Kumar A, Bisht M, Venkatesu P. Biocompatibility of Ionic Liquids towards Protein Stability: A Comprehensive Overview on the Current Understanding and Their Implications. Int. J. Biol. Macromol. 2017; 96: 611-651
- 54 Kaim V, Rintala J, He C. Selective Recovery of Rare Earth Elements from E-Waste via Ionic Liquid Extraction: A Review. Sep. Purif. Technol. 2023; 306 122699
- 55 Goutham R, Rohit P, Vigneshwar SS, Swetha A, Arun J, Gopinath KP, Pugazhendhi A. Ionic Liquids in Wastewater Treatment: A Review on Pollutant Removal and Degradation, Recovery of Ionic Liquids, Economics and Future Perspectives. J. Mol. Liq. 2022; 349 118150
- 56 Sun X, Luo H, Dai S. Ionic Liquids-Based Extraction: A Promising Strategy for the Advanced Nuclear Fuel Cycle. Chem. Rev. 2012; 112: 2100-2128
- 57 Tiago GA. O, Matias IA. S, Ribeiro AP. C, Martins LM. D. R. S. Application of Ionic Liquids in Electrochemistry—Recent Advances. Molecules 2020; 25: 5812
- 58 Ray A, Saruhan B. Application of Ionic Liquids for Batteries and Supercapacitors. Materials 2021; 14: 2942
- 59 Deng MJ, Chen PY, Leong TI, Sun IW, Chang JK, Tsai WT. Dicyanamide Anion Based Ionic Liquids for Electrodeposition of Metals. Electrochem. Commun. 2008; 10: 213-216
- 60 Sen S, Goodwin SE, Barbará PV, Rance GA, Wales D, Cameron JM, Sans V, Mamlouk M, Scott K, Walsh DA. Gel-Polymer Electrolytes Based on Poly(Ionic Liquid)/Ionic Liquid Networks. ACS Appl. Polym. Mater. 2021; 3: 200-208
- 61 Sarkar B, Prabakaran P, Prasad E, Gardas RL. Pyridine Appended Poly(Alkyl Ether) Based Ionogels for Naked Eye Detection of Cyanide Ions: A Metal-Free Approach. ACS Sustainable Chem. Eng. 2020; 8: 8327-8337
- 62 Shiddiky MJ. A, Torriero AA. J. Application of Ionic Liquids in Electrochemical Sensing Systems. Biosens. Bioelectron. 2011; 75: 1775-1787
- 63 Das I, Rama Swami K, Gardas RL. Influence of Alkyl Substituent on Thermophysical Properties and CO2 Absorption Studies of Diethylenetriamine-Based Ionic Liquids. J. Mol. Liq. 2023; 371 121114
- 64 Islam N, Warsi Khan H, Gari AA, Yusuf M, Irshad K. Screening of Ionic Liquids as Sustainable Greener Solvents for the Capture of Greenhouse Gases Using COSMO-RS Approach: Computational Study. Fuel 2022; 330 125540
- 65 Vekariya RL. A Review of Ionic Liquids: Applications towards Catalytic Organic Transformations. J. Mol. Liq. 2017; 227: 44-60
- 66 Kowalczyk K, Spychaj T. Zinc-Free Varnishes and Zinc-Rich Paints Modified with Ionic Liquids. Corros. Sci. 2014; 78: 111-120
- 67 Zheng D, Dong L, Huang W, Wu X, Nie N. A Review of Imidazolium Ionic Liquids Research and Development towards Working Pair of Absorption Cycle. Renewable Sustainable Energy Rev. 2014; 37: 47-68
- 68 Baharuddin SH, Mustahil NA, Reddy AV. B, Abdullah AA, Mutalib MI. A, Moniruzzaman M. Development, Formulation and Optimization of a Novel Biocompatible Ionic Liquids Dispersant for the Effective Oil Spill Remediation. Chemosphere 2020; 249 126125
- 69 Joseph A, Zyła G, Thomas VI, Nair PR, Padmanabhan AS, Mathew S. Paramagnetic Ionic Liquids for Advanced Applications: A Review. J. Mol. Liq. 2016; 218: 319-331
- 70 El shafiee CE, El-Nagar RA, Nessim MI, Khalil MM. H, Shaban ME, Alharthy RD, Ismail DA, Abdallah RI, Moustafa YM. Application of Asymmetric Dicationic Ionic Liquids for Oil Spill Remediation in Sea Water. Arab. J. Chem. 2021; 14 103123
- 71 Snigur D, Azooz EA, Zhukovetska O, Guzenko O, Mortada W. Low-Density Solvent-Based Liquid–Liquid Microextraction for Separation of Trace Concentrations of Different Analytes. TrAC, Trends Anal. Chem. 2023; 167 117260
- 72 Silveira JR. K, Brudi LC, Waechter SR, Mello PA, Costa AB, Duarte FA. Copper Determination in Beer by Flame Atomic Absorption Spectrometry after Extraction and Preconcentration by Dispersive Liquid–Liquid Microextraction. Microchem. J. 2023; 184 108181
- 73 Zhou Q, Bai H, Xie G, Xiao J. Temperature-Controlled Ionic Liquid Dispersive Liquid Phase Micro-Extraction. J. Chromatogr. A 2008; 1177: 43-49
- 74 Psillakis E. Vortex-Assisted Liquid–Liquid Microextraction Revisited. TrAC, Trends Anal. Chem. 2019; 113: 332-339
- 75 Basaiahgari A, Gardas R.L. Ionic liquid–based aqueous biphasic systems as sustainable extraction and separation techniques. Curr. Opin. Green Sustainable Chem. 2021; 27 100423
- 76 Torbati M, Farajzadeh MA, Afshar Mogaddam MR, Torbati M. Development of Microwave-Assisted Liquid–Liquid Extraction Combined with Lighter than Water in Syringe Dispersive Liquid–Liquid Microextraction Using Deep Eutectic Solvents: Application in Extraction of Some Herbicides from Wheat. Microchem. J. 2019; 147: 1103-1108
- 77 Abdi K, Ezoddin M, Pirooznia N. Ultrasound-Assisted Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplet Using Deep Eutectic Solvent as Disperser for Preconcentration of Ni and Co. Int. J. Environ. Anal. Chem. 2023; 103: 4806-4819
- 78 Khachatryan KS, Smirnova SV, Torocheshnikova II, Shvedene NV, Formanovsky AA, Pletnev IV. Solvent Extraction and Extraction-Voltammetric Determination of Phenols Using Room Temperature Ionic Liquid. Anal. Bioanal. Chem. 2005; 381: 464-470
- 79 Vidal ST. M, Correia MJ. N, Marques MM, Ismael MR, Reis MT. A. Studies on the Use of Ionic Liquids as Potential Extractants of Phenolic Compounds and Metal Ions. Sep. Sci. Technol. 2004; 39: 2155-2169
- 80 Egorov VM, Smirnova SV, Pletnev IV. Highly Efficient Extraction of Phenols and Aromatic Amines into Novel Ionic Liquids Incorporating Quaternary Ammonium Cation. Sep. Purif. Technol. 2008; 63: 710-715
- 81 Cesari L, Canabady-Rochelle L, Mutelet F. Extraction of Phenolic Compounds from Aqueous Solution Using Choline Bis(Trifluoromethylsulfonyl)Imide. Fluid Phase Equilib. 2017; 446: 28-35
- 82 González EJ, Díaz I, Gonzalez-Miquel M, Rodríguez M, Sueiras A. On the Behavior of Imidazolium versus Pyrrolidinium Ionic Liquids as Extractants of Phenolic Compounds from Water: Experimental and Computational Analysis. Sep. Purif. Technol. 2018; 201: 214-222
- 83 Sas OG, Domínguez I, González B, Domínguez Á. Liquid–Liquid Extraction of Phenolic Compounds from Water Using Ionic Liquids: Literature Review and New Experimental Data Using [C2mim]FSI. J. Environ. Manage. 2018; 228: 475-482
- 84 Sas OG, Sánchez PB, González B, Domínguez Á. Removal of Phenolic Pollutants from Wastewater Streams Using Ionic Liquids. Sep. Purif. Technol. 2020; 236 116310
- 85 Yao C, Li T, Twu P, Pitner WR, Anderson JL. Selective Extraction of Emerging Contaminants from Water Samples by Dispersive Liquid–Liquid Microextraction Using Functionalized Ionic Liquids. J. Chromatogr. A 2011; 1218: 1556-1566
- 86 Hou D, Guan Y, Di X. Temperature-Induced Ionic Liquids Dispersive Liquid–Liquid Microextraction of Tetracycline Antibiotics in Environmental Water Samples Assisted by Complexation. Chromatographia 2011; 73: 1057-1064
- 87 Parrilla Vázquez MM, Parrilla Vázquez P, Martínez Galera M, Gil García MD, Uclés A. Ultrasound-Assisted Ionic Liquid Dispersive Liquid–Liquid Microextraction Coupled with Liquid Chromatography-Quadrupole-Linear Ion Trap-Mass Spectrometry for Simultaneous Analysis of Pharmaceuticals in Wastewaters. J. Chromatogr. A 2013; 1291: 19-26
- 88 Padinhattath S.P, Gardas RL. Extraction of Diclofenac Sodium from Water Using N-Benzylethanolamine Based Ionic Liquids: Computational and Experimental Approach. J. Mol. Liq. 2023; 378 121603
- 89 Liu JF, Chi YG, Peng JF, Jiang GB, Jönsson JÅ. Ionic Liquids/Water Distribution Ratios of Some Polycyclic Aromatic Hydrocarbons. J. Chem. Eng. Data 2004; 49: 1422-1424
- 90 Fan YC, Hu ZL, Chen ML, Tu CS, Zhu Y. Ionic Liquid Based Dispersive Liquid–Liquid Microextraction of Aromatic Amines in Water Samples. Chin. Chem. Lett. 2008; 19: 985-987
- 91 Pena MT, Casais MC, Mejuto MC, Cela R. Development of an Ionic Liquid Based Dispersive Liquid–Liquid Microextraction Method for the Analysis of Polycyclic Aromatic Hydrocarbons in Water Samples. J. Chromatogr. A 2009; 1216: 6356-6364
- 92 AlSaleem SS, Zahid WM, Alnashef IM, Haider H. Extraction of Halogenated Hydrocarbons Using Hydrophobic Ionic Liquids. Sep. Purif. Technol. 2017; 184: 231-239
- 93 He L, Luo X, Xie H, Wang C, Jiang X, Lu K. Ionic Liquid-Based Dispersive Liquid–Liquid Microextraction Followed High-Performance Liquid Chromatography for the Determination of Organophosphorus Pesticides in Water Sample. Anal. Chim. Acta 2009; 655: 52-59
- 94 Liu Y, Zhao E, Zhu W, Gao H, Zhou Z. Determination of Four Heterocyclic Insecticides by Ionic Liquid Dispersive Liquid–Liquid Microextraction in Water Samples. J. Chromatogr. A 2009; 1216: 885-891
- 95 Zhang J, Li M, Yang M, Peng B, Li Y, Zhou W, Gao H, Lu R. Magnetic Retrieval of Ionic Liquids: Fast Dispersive Liquid–Liquid Microextraction for the Determination of Benzoylurea Insecticides in Environmental Water Samples. J. Chromatogr. A 2012; 1254: 23-29
- 96 Zhao RS, Wang X, Sun J, Wang SS, Yuan JP, Wang XK. Trace Determination of Triclosan and Triclocarban in Environmental Water Samples with Ionic Liquid Dispersive Liquid-Phase Microextraction Prior to HPLC-ESI-MS-MS. Anal. Bioanal. Chem. 2010; 397: 1627-1633
- 97 Zhao RS, Wang X, Zhang LL, Wang SS, Yuan JP. Ionic Liquid/Ionic Liquid Dispersive Liquid–Liquid Microextraction, a New Sample Enrichment Procedure for the Determination of Hexabromocyclododecane Diastereomers in Environmental Water Samples. Anal. Methods 2011; 3: 831-836
- 98 Bhosale VK, Patil NV, Kulkarni PS. Treatment of Energetic Material Contaminated Wastewater Using Ionic Liquids. RSC Adv. 2015; 5: 20503-20510
- 99 Yao C, Anderson JL. Dispersive Liquid–Liquid Microextraction Using an in Situ Metathesis Reaction to Form an Ionic Liquid Extraction Phase for the Preconcentration of Aromatic Compounds from Water. Anal. Bioanal. Chem. 2009; 395: 1491-1502
- 100 López-Darias J, Pino V, Ayala JH, Afonso AM. In-Situ Ionic Liquid-Dispersive Liquid–Liquid Microextraction Method to Determine Endocrine Disrupting Phenols in Seawaters and Industrial Effluents. Microchim. Acta 2011; 174: 213-222
- 101 Zhong Q, Su P, Zhang Y, Wang R, Yang Y. In-Situ Ionic Liquid-Based Microwave-Assisted Dispersive Liquid–Liquid Microextraction of Triazine Herbicides. Microchim. Acta 2012; 178: 341-347
- 102 Zhou Q, Bai H, Xie G, Xiao J. Trace Determination of Organophosphorus Pesticides in Environmental Samples by Temperature-Controlled Ionic Liquid Dispersive Liquid-Phase Microextraction. J. Chromatogr. A 2008; 1188: 148-153
- 103 Zhou Q, Gao Y, Xiao J, Xie G. Sensitive Determination of Phenols from Water Samples by Temperature-Controlled Ionic Liquid Dispersive Liquid-Phase Microextraction. Anal. Methods 2011; 3: 653-658
- 104 Zhang Y, Lee HK. Ionic Liquid-Based Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction Followed High-Performance Liquid Chromatography for the Determination of Ultraviolet Filters in Environmental Water Samples. Anal. Chim. Acta 2012; 750: 120-126
- 105 Wang H, Yang X, Hu L, Gao H, Lu R, Zhang S, Zhou W. Detection of Triazole Pesticides in Environmental Water and Juice Samples Using Dispersive Liquid–Liquid Microextraction with Solidified Sedimentary Ionic Liquids. New J. Chem. 2016; 40: 4696-4704
- 106 Zeeb M, Farahani H. Ionic Liquid-Based Ultrasound-Assisted In-Situ Solvent Formation Microextraction and High-Performance Liquid Chromatography for the Trace Determination of Polycyclic Aromatic Hydrocarbons in Environmental Water Samples. J. Appl. Chem. Res. 2018; 12: 77-91
- 107 Vijayaraghavan R, Vedaraman N, Surianarayanan M, MacFarlane DR. Extraction and Recovery of Azo Dyes into an Ionic Liquid. Talanta 2006; 69: 1059-1062
- 108 Li C, Xin B, Xu W, Zhang Q. Study on the Extraction of Dyes into a Room-Temperature Ionic Liquid and Their Mechanisms. J. Chem. Technol. Biotechnol. 2007; 82: 196-204
- 109 Othman N, Mili N, Zailani SN, Aimi N, Mohammad B. Extraction of Remazol Brilliant Orange 3R from Textile Wastewater using Tetrabutyl Ammonium Bromide. J. Teknol. 2010; 53: 29-39
- 110 Zhang Z, Zhou K, Bu YQ, Shan ZJ, Liu JF, Wu XY, Yang LQ, Chen ZL. Determination of Malachite Green and Crystal Violet in Environmental Water Using Temperature-Controlled Ionic Liquid Dispersive Liquid–Liquid Microextraction Coupled with High Performance Liquid Chromatography. Anal. Methods 2012; 4: 429-433
- 111 Chen X, Li F, Asumana C, Yu G. Extraction of Soluble Dyes from Aqueous Solutions with Quaternary Ammonium-Based Ionic Liquids. Sep. Purif. Technol. 2013; 106: 105-109
- 112 Talbi Z, Haddou B, Ghouas H, Kameche M, Derriche Z. Gourdon, C Cationic Dye Removal from Aqueous Solutions Using Ionic Liquid and Nonionic Surfactant-Ionic Liquid Systems: A Comparative Study Based upon Experimental Design. Chem. Eng. Commun. 2014; 201: 41-52
- 113 Fan J, Fan Y, Zhang S, Wang J. Extraction of Azo Dyes from Aqueous Solutions with Room Temperature Ionic Liquids. Sep. Sci. Technol. 2011; 46: 1172-1177
- 114 Ferreira AM, Coutinho JA. P, Fernandes AM, Freire MG. Complete Removal of Textile Dyes from Aqueous Media Using Ionic-Liquid-Based Aqueous Two-Phase Systems. Sep. Purif. Technol. 2014; 128: 58-66
- 115 Santos Klienchen Dalari BL, Lisboa Giroletti C, Malaret FJ, Skoronski E, P. Hallett J, Matias WG, Puerari RC, Nagel-Hassemer ME. Application of a Phosphonium-Based Ionic Liquid for Reactive Textile Dye Removal: Extraction Study and Toxicological Evaluation. J. Environ. Manage. 2022; 304 114322
- 116 Padinhattath SP, Govindaraj J, Gardas RL. Exploring Non-Stoichiometric Pseudoprotic Ionic Liquid for Effective Elimination of Cationic Dyes from Textile Effluent: A Circular Approach. J. Water Process Eng. 2024; 58 104921
- 117 Dai S, Ju YH, Barnes CE. Solvent Extraction of Strontium Nitrate by a Crown Ether Using Room-Temperature Ionic Liquids, Journal of the Chemical Society. Dalton Trans. 1999; 1201-1202
- 118 Stepinski DC, Jensen MP, Dzielawa JA, Dietz ML. Synergistic Effects in the Facilitated Transfer of Metal Ions into Room-Temperature Ionic Liquids. Green Chem. 2005; 7: 151-158
- 119 Luo H, Huang JF, Dai S. Solvent Extraction of Sr2+and Cs+using Protic Amide-Based Ionic Liquids. Sep. Sci. Technol. 2010; 45: 1679-1688
- 120 Turanov AN, Karandashev VK, Baulin VE. Extraction of Alkaline Earth Metal Ions with TODGA in the Presence of Ionic Liquids. Solvent Extr. Ion Exch. 2010; 28: 367-387
- 121 Toncheva GK, Hristov DG, Milcheva NP, Gavazov KB. Extraction-Chromogenic System for Nickel(II) Based on 5-Methyl-4-(2-Thiazolylazo)Resorcinol and Aliquat 336. Acta Chim. Slov. 2020; 67: 151-158
- 122 Dukov I, Atanassova M. Synergistic solvent extraction of Ce(III) with mixtures of chelating extractant and quaternary ammonium salt. J. Univ. Chem. Technol. Metall. 2002; 4: 5-12
- 123 Wankowski JL, Dietz ML. Ionic Liquid (IL) Cation and Anion Structural Effects on Metal Ion Extraction into Quaternary Ammonium-Based ILs. Solvent Extr. Ion Exch. 2016; 34: 48-59
- 124 Takahashi T, Ito T, Kim SY. Extraction Behavior of Sr (II) from High-Level Liquid Waste Using Ionic Liquid Extraction System with DtBuCH18C6. Energy Procedia 2017; 131: 170-177
- 125 Shi C, Jing Y, Jia Y. Solvent Extraction of Lithium Ions by Tri-n-Butyl Phosphate Using a Room Temperature Ionic Liquid. J. Mol. Liq. 2016; 215: 640-646
- 126 Shi C, Jing Y, Xiao J, Wang X, Jia Y. Liquid–Liquid Extraction of Lithium Using Novel Phosphonium Ionic Liquid as an Extractant. Hydrometallurgy 2017; 169: 314-320
- 127 Deferm C, Van De Voorde M, Luyten J, Oosterhof H, Fransaer J, Binnemans K. Purification of Indium by Solvent Extraction with Undiluted Ionic Liquids. Green Chem. 2016; 18: 4116-4127
- 128 Eguchi A, Morita K, Hirayama N. Ionic Liquid Chelate Extraction Behavior of Trivalent Group 13 Metals into 1-Alkyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imides Using 8-Quinolinol as Chelating Extractant. Anal. Sci. 2019; 35: 1003-1007
- 129 Luo D, Zhu N, Li Y, Cui J, Wu P, Wang J. Simultaneous Leaching and Extraction of Indium from Waste LCDs with Acidic Ionic Liquids. Hydrometallurgy 2019; 189 105146
- 130 Alguacil FJ, Escudero E. Solvent Extraction of Indium(III) from HCl Solutions by the Ionic Liquid (A324H+)(Cl−) Dissolved in Solvesso 100. Hydrometallurgy 2019; 189 105104
- 131 Alguacil FJ, López FA. Dispersion-Free Extraction of In(III) from HCl Solutions Using a Supported Liquid Membrane Containing the HA324H+Cl− Ionic Liquid as the Carrier. Sci. Rep. 2020; 10: 13868
- 132 Papaiconomou N, Lee JM, Salminen J, von Stosch T, Prausnitz JM. Selective Extraction of Copper, Mercury, Silver, and Palladium Ions from Water Using Hydrophobic Ionic Liquids. Ind. Chem. Eng. Res. 2008; 47: 5080-5086
- 133 Kogelnig D, Stojanovic A, Galanski MS, Groessl M, Jirsa F, Krachler R, Keppler BK. Greener Synthesis of New Ammonium Ionic Liquids and Their Potential as Extracting Agents. Tetrahedron Lett. 2008; 49: 2782-2785
- 134 Egorov VM, Djigailo DI, Momotenko DS, Chernyshov DV, Torocheshnikova II, Smirnova SV, Pletnev IV. Task-Specific Ionic Liquid Trioctylmethylammonium Salicylate as Extraction Solvent for Transition Metal Ions. Talanta 2010; 80: 1177-1182
- 135 Rajendran A, Ragupathy D, Priyadarshini M, Magesh A, Jaishankar P, Madhavan NS, Sajitha K, Balaji S. Effective Extraction of Heavy Metals from Their Effluents Using Some Potential Ionic Liquids as Green Chemicals. E-J. Chem. 2011; 8: 697-702
- 136 Domańska U, Rękawek A. Extraction of Metal Ions from Aqueous Solutions Using Imidazolium Based Ionic Liquids. J. Solution Chem. 2009; 8: 697-702
- 137 Fetouhi B, Belarbi H, Benabdellah A, Kasmi-Mir S, Kirsch G. Extraction of the heavy metals from the aqueous phase in ionic liquid 1 butyl-3-methylimidazolium hexafluorophosphate by N-salicylideneaniline. J. Mater. Environ. Sci. 2016; 7: 746-754 https://www.jmaterenvironsci.com/Document/vol7/vol7_N3/88-JMES-1114-2014%20-Fetouhi.pdf
- 138 Thasneema KK, Dipin T, Thayyil MS, Sahu PK, Messali M, Rosalin T, Elyas KK, Saharuba PM, Anjitha T, Hadda TB. Removal of Toxic Heavy Metals, Phenolic Compounds and Textile Dyes from Industrial Waste Water Using Phosphonium Based Ionic Liquids. J. Mol. Liq. 2021; 323 114645
- 139 Matsumoto M, Yamaguchi T, Tahara Y. Extraction of Rare Earth Metal Ions with an Undiluted Hydrophobic Pseudoprotic Ionic Liquid. Metals 2020; 10: 502
- 140 Janssen CH. C. Heavy Metal Extractions from NaCl Brines to Pseudoprotic Ionic Liquids. Ind. Eng. Chem. Res. 2021; 60: 1808-1816
- 141 Deng Y, Ding Y, Huang Z, Yu Y, He J, Zhang Y. Boosting the Extraction of Rare Earth Elements from Chloride Medium by Novel Carboxylic Acid Based Ionic Liquids. J. Mol. Liq. 2021; 329 115549
- 142 Castillo-Ramírez C, Janssen CH. C. Pseudo-Protic Ionic Liquids for the Extraction of Metals Relevant for Urban Mining. Ind. Eng. Chem. Res. 2023; 62: 627-636
- 143 Padinhattath SP, Gardas RL. Effective elimination of multiple heavy metal ions from wastewater using circular liquid–liquid extraction based on trioctylammonium carboxylate ionic liquids. Sep. Purif. Technol. 2025; 356 Part A, 129880