Subscribe to RSS

DOI: 10.1055/a-2515-6076
Exploring Ionic Liquid-Based Liquid–Liquid Extraction as a Benign Alternative for Sustainable Wastewater Treatment
Funding Information The authors would like to acknowledge funds from the International Cooperation Division, Department of Science and Technology (DST), India, through project DST/INT/Portugal/P-10/2021.

Abstract
The uncontrolled release of industrial effluents containing micropollutants (MPs), dyes, and heavy metal ions contaminates natural water bodies posing threats to health and the environment. Conventional treatment methods often struggle with challenges such as prolonged processing time, low specificity, and risk of producing secondary pollutants. Liquid–liquid extraction (LLE) technique utilizing ionic liquids (ILs) has emerged as a viable alternative for the elimination of contaminants from wastewater. ILs, characterized by minimal volatility and tunable physicochemical properties, facilitate the precise elimination of contaminants from industrial effluent. IL-LLE streamlines the experimental setup, lowers energy consumption, promotes recyclability for reuse, enhances mechanistic understanding, and hence provides a sustainable alternative to industrial effluent treatment. This review provides a comprehensive analysis of IL-LLE approaches for wastewater treatment, commencing with an overview of the historical evolution of ILs, tracing their progression from initial research to contemporary and advanced applications. The article primarily examines the practical applications of IL-LLE, demonstrating how these approaches are employed to efficiently remove diverse contaminants from both simulated and actual industrial wastewater samples. As a whole, the review consolidates the versatility and efficiency of IL-based LLE in addressing various challenges in wastewater treatment.
Keywords
Ionic liquid - Wastewater - Liquid–liquid extraction - Micropollutants - Dyes - Heavy metals - ReuseDeclaration of Generative AI in Scientific Writing
During the preparation of this research work, ChatGPT was used to improve the readability and language of the manuscript. After using this tool/service, the authors reviewed and edited the content as required and took full responsibility for the publication.
Publication History
Received: 04 November 2024
Accepted after revision: 10 January 2025
Accepted Manuscript online:
13 January 2025
Article published online:
29 January 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
Sachind Prabha Padinhattath, M. Shaibuna, Ramesh L. Gardas. Exploring Ionic Liquid-Based Liquid–Liquid Extraction as a Benign Alternative for Sustainable Wastewater Treatment. Sustainability & Circularity NOW 2025; 02: a25156076.
DOI: 10.1055/a-2515-6076
-
References
- 1
Theodorou P.
The Effects of Urbanisation on Ecological Interactions. Curr. Opin. Insect Sci. 2022;
52 100922
MissingFormLabel
- 2
Shaibuna M,
Padinhattath SP,
Gardas RL.
Efficient removal of multiple heavy metal ions from wastewater using task-specific
hydrophobic deep eutectic solvents: A circular approach. J. Mol. Liqu. 2024; 416 126487
MissingFormLabel
- 3
Zenker A,
Cicero MR,
Prestinaci F,
Bottoni P,
Carere M.
Bioaccumulation and Biomagnification Potential of Pharmaceuticals with a Focus to
the Aquatic Environment. J. Environ. Manage. 2014; 133: 378-387
MissingFormLabel
- 4
Padinhattath SP,
Panneer SV. K,
Subramanian V,
Gardas RL.
Effective removal of personal care product residues from aqueous media using hydrophobic
deep eutectic solvents: Experimental and computational approach. Microchem. J. 2024;
197 109891
MissingFormLabel
- 5
Gupta VK,
Ali I,
Saleh TA,
Nayak A,
Agarwal S.
Chemical Treatment Technologies for Waste-Water Recycling – An Overview. RSC Adv.
2012; 2: 6380-6388
MissingFormLabel
- 6
Wang J,
Chen H.
Catalytic Ozonation for Water and Wastewater Treatment: Recent Advances and Perspective.
Sci. Total Environ. 2020; 704 135249
MissingFormLabel
- 7
Hube S,
Eskafi M,
Hrafnkelsdóttir KF,
Bjarnadóttir B,
Bjarnadóttir MÁ,
Axelsdóttir S,
Wu B.
Direct Membrane Filtration for Wastewater Treatment and Resource Recovery: A Review.
Sci. the Total Environ 2020; 710 136375
MissingFormLabel
- 8
Zieliński M,
Kazimierowicz J,
Dębowski M.
Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics,
Development Directions, and Technological Innovations. Energies 2023; 16: 83
MissingFormLabel
- 9
Bokhary A,
Leitch M,
Liao BQ.
Liquid–Liquid Extraction Technology for Resource Recovery: Applications, Potential,
and Perspectives. J. Water Process Eng. 2021; 40 101762
MissingFormLabel
- 10
Hall DW,
Sandrin JA,
Mcbride RE.
An Overview of Solvent Extraction Treatment Technologies. Environ. Prog. 1990; 9:
98-105
MissingFormLabel
- 11
Priyanka VP,
Harikrishna AS,
Kesavan V,
Gardas RL.
Synergistic Interaction and Antibacterial Properties of Surface-Active Mono- and Di-Cationic
Ionic Liquids with Ciprofloxacin. J. Mol. Liq. 2024; 399 124359
MissingFormLabel
- 12
Keshapolla D,
Devunuri N,
Ijardar SP,
Gardas RL.
Influence of Anion Structure on Volumetric Properties of Dilute Binary Systems Containing
Carboxylate Functioned Trihexylammonium Ionic Liquids in Toluene / Dodecane. J. Mol.
Liq. 2023; 391 123252
MissingFormLabel
- 13
Shaibuna M,
Hiba K,
Shebitha AM,
Kariyottu Kuniyil MJ,
Sherly mole PB,
Sreekumar K.
Sustainable and Selective Synthesis of Benzimidazole Scaffolds Using Deep Eutectic
Solvents. Current Research in Green and Sustainable. Chemistry 2022; 5 100285
MissingFormLabel
- 14
Shaibuna M,
Hiba K,
Sreekumar K.
Deep Eutectic Solvent for the Synthesis of (E)-Nitroalkene via Microwave Assisted
Henry Reaction. Curr. Res. Green Sustainable Chemistry 2021; 4 100187
MissingFormLabel
- 15
Shaibuna M,
Sreekumar K.
Experimental Investigation on the Correlation between the Physicochemical Properties
and Catalytic Activity of Six DESs in the Kabachnik-Fields Reaction. ChemistrySelect
2020; 5: 13454-13460
MissingFormLabel
- 16
Chenthamara B,
Gardas RL.
Beyond the Conventional Leaching: Exploring Pyruvic Acid-Based Deep Eutectic Solvents
for Sustainable Recycling of Spent Lithium-Ion Battery Cathode Material. ACS Sustainable
Chem. Eng. 2024; 12: 12827-12836
MissingFormLabel
- 17
Dash BR,
Gardas RL,
Mishra AK.
Probing the Heterogeneity of Molecular Level Organization of Ionic Liquids: A Comparative
Study Using Neutral Nile Red and Cationic Nile Blue Sulfate as Fluorescent Probes
for Butyrolactam-Based Protic Ionic Liquids. Phys. Chem. Chem. Phys. 2024; 26: 13350-13363
MissingFormLabel
- 18
Jisha KJ,
Gardas RL.
Exploring the structural stability of hemoglobin in DBU-based ionic liquids: Insights
from spectroscopic investigations. J. Mol. Liq. 2023; 388 122837
MissingFormLabel
- 19
Athira KK,
Mepperi J,
Chandra Kotamarthi H,
Gardas RL.
Ionic Liquid–Based Aqueous Biphasic System as an Alternative Tool for Enhanced Bacterial
DNA Extraction. Anal. Chim. Acta 2024; 1321 343045,
MissingFormLabel
- 20
Shaibuna M,
Kuniyil MJ. K,
Sreekumar K.
Deep Eutectic Solvent Assisted Synthesis of Dihydropyrimidinones/ThionesviaBiginelli
Reaction: Theoretical Investigations on Their Electronic and Global Reactivity Descriptors.
New J. Chem. 2021; 45 (44) 20765-20775
MissingFormLabel
- 21
Al Hassan MK,
Alfarsi A,
Nasser MS,
Hussein IA,
Khan I.
Ionic Liquids and NADES for Removal of Organic Pollutants and Heavy Metals in Wastewater:
A Comprehensive Review. J. Mol. Liq. 2023; 391 123163
MissingFormLabel
- 22
Padinhattath SP,
Chenthamara B,
Gardas RL.
Ionic Liquids as Alternative Solvents for Energy Conservation and Environmental Engineering.
Acta Innov. 2021; 38: 62-79
MissingFormLabel
- 23
Fesliyan S,
Maslov MM,
Sanaullah.
Altunay N,
Kaya S.
Investigation of Magnetic Ionic Liquids for Selective and Rapid Extraction of Gallic
Acid from Complex Samples Using Experimental, Statistical Modeling and Density Functional
Theory Studies. Food Chem. 2024; 460 140516
MissingFormLabel
- 24
Khan HW,
Zailan AA,
Bhaskar Reddy AV,
Goto M,
Moniruzzaman M.
Ionic Liquid-Based Dispersive Liquid–Liquid Microextraction of Succinic Acid from
Aqueous Streams: COSMO-RS Screening and Experimental Verification. Environ. Technol.
2024; 45: 3828-3839
MissingFormLabel
- 25
Yu L,
Li Z,
Huang W,
Ali A,
Chen Y,
Zhao G,
Yao S.
Recovery and Post-Treatment Processes for Ionic Liquids and Deep Eutectic Solvents.
J. Mol. Liq. 2024; 402 124767
MissingFormLabel
- 26
Singh SK,
Savoy AW.
Ionic Liquids Synthesis and Applications: An Overview. J. Mol. Liq. 2020; 297 112038
MissingFormLabel
- 27
Austen Angell C,
Ansari Y,
Zhao Z.
Ionic Liquids: Past, Present and Future. Faraday Discuss. 2012; 154: 9-27
MissingFormLabel
- 28
Jorge M.S.A,
Athira K.K,
Alves M.B,
Gardas R.L.
Textile dyes effluents: A current scenario and the use of aqueous biphasic systems
for the recovery of dyes. J. Water Process Eng. 2023; 55 104125
MissingFormLabel
- 29
Walden P.
About the molecular size and electrical conductivity of some molten salts. Bull. Acad.
Impér. Sci. 1914; 8: 405-422
MissingFormLabel
- 30
Hurley FH,
WIer TP.
Electrodeposition of Metals from Fused Quaternary Ammonium Salts. J. Electrochem.
Soc. 1951; 98: 203-206
MissingFormLabel
- 31
Welton T.
Ionic Liquids: A Brief History. Biophys. Rev. 2018; 10: 691-706
MissingFormLabel
- 32
Wilkes JS,
Zaworotko MJ.
Air and Water Stable I-Ethyl-3-Methylimidazolium Based Ionic Liquids. J. Chem. Soc.,
Chem. Commun. 1992; 965-967
MissingFormLabel
- 33
Giernoth R.
Task-Specific Ionic Liquids. Angew. Chem., Int. Edi. 2010; 49: 2834-2839
MissingFormLabel
- 34
Llaver M,
Fiorentini EF,
Quintas PY,
Oviedo MN,
Botella Arenas MB,
Wuilloud RG.
Task-Specific Ionic Liquids: Applications in Sample Preparation and the Chemistry
behind Their Selectivity. Adv. Sample Prep. 2022; 1 100004
MissingFormLabel
- 35
MacFarlane DR,
Chong AL,
Forsyth M,
Kar M,
Vijayaraghavan R,
Somers A,
Pringle JM.
New Dimensions in Salt-Solvent Mixtures: A 4th Evolution of Ionic Liquids. Faraday
Discuss. 2018; 206: 9-28
MissingFormLabel
- 36
Angell CA,
Byrne N,
Belieres JP.
Parallel Developments in Aprotic and Protic Ionic Liquids: Physical Chemistry and
Applications. Acc. Chem. Res. 2007; 40: 1228-1236
MissingFormLabel
- 37
Esperança JM. S. S,
Lopes JN. C,
Tariq M,
Santos LM. N. B. F,
Magee JW,
Rebelo LP. N.
Volatility of Aprotic Ionic Liquids-A Review. J. Chem. Eng. Data 2010; 55: 3-12
MissingFormLabel
- 38
Greaves TL,
Drummond CJ.
Protic Ionic Liquids: Properties and Applications. Chem. Rev. 2008; 108: 206-237
MissingFormLabel
- 39
Bailey J,
Byrne EL,
Goodrich P,
Kavanagh P,
Swadźba-Kwaśny M.
Protic Ionic Liquids for Sustainable Uses. Green Chem. 2023; 26: 1092-1131
MissingFormLabel
- 40
Doi H,
Song X,
Minofar B,
Kanzaki R,
Takamuku T,
Umebayashi Y.
A New Proton Conductive Liquid with No Ions: Pseudo-Protic Ionic Liquids. Chem. –
Eur. J. 2013; 19: 11522-11526
MissingFormLabel
- 41
Watanabe H,
Umecky T,
Arai N,
Nazet A,
Takamuku T,
Harris KR,
Kameda Y,
Buchner R,
Umebayashi Y.
Possible Proton Conduction Mechanism in Pseudo-Protic Ionic Liquids: A Concept of
Specific Proton Conduction. J. Phys. Chem. B 2019; 123: 6244-6252
MissingFormLabel
- 42
Watanabe H,
Arai N,
Jihae H,
Kawana Y,
Umebayashi Y.
Ionic Conduction within Non-Stoichiometric N-Methylimidazole-Acetic Acid Pseudo-Protic
Ionic Liquid Mixtures. J. Mol. Liq. 2022; 352 118705
MissingFormLabel
- 43
Abe H,
Ohkubo T,
Miike T.
PH Variation in Protic and Pseudo-Protic Ionic Liquid–Water Solutions. Results Chem.
2023; 6 101045
MissingFormLabel
- 44
Santos E,
Albo J,
Irabien A.
Magnetic Ionic Liquids: Synthesis, Properties and Applications. RSC Adv. 2014; 4:
40008-40018
MissingFormLabel
- 45
Hayashi S,
Hamaguchi HO.
Discovery of a Magnetic Ionic Liquid [Bmim]FeCl4
. Chem. Lett. 2004; 33: 1590-1591
MissingFormLabel
- 46
Clark KD,
Nacham O,
Purslow JA,
Pierson SA,
Anderson JL.
Magnetic Ionic Liquids in Analytical Chemistry: A Review. Anal. Chim. Acta 2016; 934:
9-21
MissingFormLabel
- 47
Sajid M.
Magnetic Ionic Liquids in Analytical Sample Preparation: A Literature Review. TrAC,
Trends Anal. Chem. 2019; 113: 210-223
MissingFormLabel
- 48
dos Santos AD,
Morais AR. C,
Melo C,
Bogel-Łukasik R,
Bogel-Łukasik E.
Solubility of Pharmaceutical Compounds in Ionic Liquids. Fluid Phase Equilib. 2013;
356: 18-29
MissingFormLabel
- 49
Smith KB,
Bridson RH,
Leeke GA.
Solubilities of Pharmaceutical Compounds in Ionic Liquids. J. Chem. Eng. Data 2011;
56: 2039-2043
MissingFormLabel
- 50
Jisha KJ,
Rajamani S,
Singh D,
Sharma G,
Gardas RL.
A Comparative Study of Ionothermal Treatment of Rice Straw Using Triflate and Acetate-Based
Ionic Liquids. J. Ion. Liq. 2022; 2 100037
MissingFormLabel
- 51
Tadesse H,
Luque R.
Advances on Biomass Pretreatment Using Ionic Liquids: An Overview. Energy Environ.
Sci. 2011; 4: 3913-3929
MissingFormLabel
- 52
Ocreto JB,
Chen WH,
Rollon AP,
Chyuan Ong H,
Pétrissans A,
Pétrissans M,
De Luna MD. G.
Ionic Liquid Dissolution Utilized for Biomass Conversion into Biofuels, Value-Added
Chemicals and Advanced Materials: A Comprehensive Review. Chem. Eng. J. 2022; 445
136733
MissingFormLabel
- 53
Kumar A,
Bisht M,
Venkatesu P.
Biocompatibility of Ionic Liquids towards Protein Stability: A Comprehensive Overview
on the Current Understanding and Their Implications. Int. J. Biol. Macromol. 2017;
96: 611-651
MissingFormLabel
- 54
Kaim V,
Rintala J,
He C.
Selective Recovery of Rare Earth Elements from E-Waste via Ionic Liquid Extraction:
A Review. Sep. Purif. Technol. 2023; 306 122699
MissingFormLabel
- 55
Goutham R,
Rohit P,
Vigneshwar SS,
Swetha A,
Arun J,
Gopinath KP,
Pugazhendhi A.
Ionic Liquids in Wastewater Treatment: A Review on Pollutant Removal and Degradation,
Recovery of Ionic Liquids, Economics and Future Perspectives. J. Mol. Liq. 2022; 349
118150
MissingFormLabel
- 56
Sun X,
Luo H,
Dai S.
Ionic Liquids-Based Extraction: A Promising Strategy for the Advanced Nuclear Fuel
Cycle. Chem. Rev. 2012; 112: 2100-2128
MissingFormLabel
- 57
Tiago GA. O,
Matias IA. S,
Ribeiro AP. C,
Martins LM. D. R. S.
Application of Ionic Liquids in Electrochemistry—Recent Advances. Molecules 2020;
25: 5812
MissingFormLabel
- 58
Ray A,
Saruhan B.
Application of Ionic Liquids for Batteries and Supercapacitors. Materials 2021; 14:
2942
MissingFormLabel
- 59
Deng MJ,
Chen PY,
Leong TI,
Sun IW,
Chang JK,
Tsai WT.
Dicyanamide Anion Based Ionic Liquids for Electrodeposition of Metals. Electrochem.
Commun. 2008; 10: 213-216
MissingFormLabel
- 60
Sen S,
Goodwin SE,
Barbará PV,
Rance GA,
Wales D,
Cameron JM,
Sans V,
Mamlouk M,
Scott K,
Walsh DA.
Gel-Polymer Electrolytes Based on Poly(Ionic Liquid)/Ionic Liquid Networks. ACS Appl.
Polym. Mater. 2021; 3: 200-208
MissingFormLabel
- 61
Sarkar B,
Prabakaran P,
Prasad E,
Gardas RL.
Pyridine Appended Poly(Alkyl Ether) Based Ionogels for Naked Eye Detection of Cyanide
Ions: A Metal-Free Approach. ACS Sustainable Chem. Eng. 2020; 8: 8327-8337
MissingFormLabel
- 62
Shiddiky MJ. A,
Torriero AA. J.
Application of Ionic Liquids in Electrochemical Sensing Systems. Biosens. Bioelectron.
2011; 75: 1775-1787
MissingFormLabel
- 63
Das I,
Rama Swami K,
Gardas RL.
Influence of Alkyl Substituent on Thermophysical Properties and CO2 Absorption Studies of Diethylenetriamine-Based Ionic Liquids. J. Mol. Liq. 2023;
371 121114
MissingFormLabel
- 64
Islam N,
Warsi Khan H,
Gari AA,
Yusuf M,
Irshad K.
Screening of Ionic Liquids as Sustainable Greener Solvents for the Capture of Greenhouse
Gases Using COSMO-RS Approach: Computational Study. Fuel 2022; 330 125540
MissingFormLabel
- 65
Vekariya RL.
A Review of Ionic Liquids: Applications towards Catalytic Organic Transformations.
J. Mol. Liq. 2017; 227: 44-60
MissingFormLabel
- 66
Kowalczyk K,
Spychaj T.
Zinc-Free Varnishes and Zinc-Rich Paints Modified with Ionic Liquids. Corros. Sci.
2014; 78: 111-120
MissingFormLabel
- 67
Zheng D,
Dong L,
Huang W,
Wu X,
Nie N.
A Review of Imidazolium Ionic Liquids Research and Development towards Working Pair
of Absorption Cycle. Renewable Sustainable Energy Rev. 2014; 37: 47-68
MissingFormLabel
- 68
Baharuddin SH,
Mustahil NA,
Reddy AV. B,
Abdullah AA,
Mutalib MI. A,
Moniruzzaman M.
Development, Formulation and Optimization of a Novel Biocompatible Ionic Liquids Dispersant
for the Effective Oil Spill Remediation. Chemosphere 2020; 249 126125
MissingFormLabel
- 69
Joseph A,
Zyła G,
Thomas VI,
Nair PR,
Padmanabhan AS,
Mathew S.
Paramagnetic Ionic Liquids for Advanced Applications: A Review. J. Mol. Liq. 2016;
218: 319-331
MissingFormLabel
- 70
El shafiee CE,
El-Nagar RA,
Nessim MI,
Khalil MM. H,
Shaban ME,
Alharthy RD,
Ismail DA,
Abdallah RI,
Moustafa YM.
Application of Asymmetric Dicationic Ionic Liquids for Oil Spill Remediation in Sea
Water. Arab. J. Chem. 2021; 14 103123
MissingFormLabel
- 71
Snigur D,
Azooz EA,
Zhukovetska O,
Guzenko O,
Mortada W.
Low-Density Solvent-Based Liquid–Liquid Microextraction for Separation of Trace Concentrations
of Different Analytes. TrAC, Trends Anal. Chem. 2023; 167 117260
MissingFormLabel
- 72
Silveira JR. K,
Brudi LC,
Waechter SR,
Mello PA,
Costa AB,
Duarte FA.
Copper Determination in Beer by Flame Atomic Absorption Spectrometry after Extraction
and Preconcentration by Dispersive Liquid–Liquid Microextraction. Microchem. J. 2023;
184 108181
MissingFormLabel
- 73
Zhou Q,
Bai H,
Xie G,
Xiao J.
Temperature-Controlled Ionic Liquid Dispersive Liquid Phase Micro-Extraction. J. Chromatogr.
A 2008; 1177: 43-49
MissingFormLabel
- 74
Psillakis E.
Vortex-Assisted Liquid–Liquid Microextraction Revisited. TrAC, Trends Anal. Chem.
2019; 113: 332-339
MissingFormLabel
- 75
Basaiahgari A,
Gardas R.L.
Ionic liquid–based aqueous biphasic systems as sustainable extraction and separation
techniques. Curr. Opin. Green Sustainable Chem. 2021; 27 100423
MissingFormLabel
- 76
Torbati M,
Farajzadeh MA,
Afshar Mogaddam MR,
Torbati M.
Development of Microwave-Assisted Liquid–Liquid Extraction Combined with Lighter than
Water in Syringe Dispersive Liquid–Liquid Microextraction Using Deep Eutectic Solvents:
Application in Extraction of Some Herbicides from Wheat. Microchem. J. 2019; 147:
1103-1108
MissingFormLabel
- 77
Abdi K,
Ezoddin M,
Pirooznia N.
Ultrasound-Assisted Liquid–Liquid Microextraction Based on Solidification of Floating
Organic Droplet Using Deep Eutectic Solvent as Disperser for Preconcentration of Ni
and Co. Int. J. Environ. Anal. Chem. 2023; 103: 4806-4819
MissingFormLabel
- 78
Khachatryan KS,
Smirnova SV,
Torocheshnikova II,
Shvedene NV,
Formanovsky AA,
Pletnev IV.
Solvent Extraction and Extraction-Voltammetric Determination of Phenols Using Room
Temperature Ionic Liquid. Anal. Bioanal. Chem. 2005; 381: 464-470
MissingFormLabel
- 79
Vidal ST. M,
Correia MJ. N,
Marques MM,
Ismael MR,
Reis MT. A.
Studies on the Use of Ionic Liquids as Potential Extractants of Phenolic Compounds
and Metal Ions. Sep. Sci. Technol. 2004; 39: 2155-2169
MissingFormLabel
- 80
Egorov VM,
Smirnova SV,
Pletnev IV.
Highly Efficient Extraction of Phenols and Aromatic Amines into Novel Ionic Liquids
Incorporating Quaternary Ammonium Cation. Sep. Purif. Technol. 2008; 63: 710-715
MissingFormLabel
- 81
Cesari L,
Canabady-Rochelle L,
Mutelet F.
Extraction of Phenolic Compounds from Aqueous Solution Using Choline Bis(Trifluoromethylsulfonyl)Imide.
Fluid Phase Equilib. 2017; 446: 28-35
MissingFormLabel
- 82
González EJ,
Díaz I,
Gonzalez-Miquel M,
Rodríguez M,
Sueiras A.
On the Behavior of Imidazolium versus Pyrrolidinium Ionic Liquids as Extractants of
Phenolic Compounds from Water: Experimental and Computational Analysis. Sep. Purif.
Technol. 2018; 201: 214-222
MissingFormLabel
- 83
Sas OG,
Domínguez I,
González B,
Domínguez Á.
Liquid–Liquid Extraction of Phenolic Compounds from Water Using Ionic Liquids: Literature
Review and New Experimental Data Using [C2mim]FSI. J. Environ. Manage. 2018; 228: 475-482
MissingFormLabel
- 84
Sas OG,
Sánchez PB,
González B,
Domínguez Á.
Removal of Phenolic Pollutants from Wastewater Streams Using Ionic Liquids. Sep. Purif.
Technol. 2020; 236 116310
MissingFormLabel
- 85
Yao C,
Li T,
Twu P,
Pitner WR,
Anderson JL.
Selective Extraction of Emerging Contaminants from Water Samples by Dispersive Liquid–Liquid
Microextraction Using Functionalized Ionic Liquids. J. Chromatogr. A 2011; 1218: 1556-1566
MissingFormLabel
- 86
Hou D,
Guan Y,
Di X.
Temperature-Induced Ionic Liquids Dispersive Liquid–Liquid Microextraction of Tetracycline
Antibiotics in Environmental Water Samples Assisted by Complexation. Chromatographia
2011; 73: 1057-1064
MissingFormLabel
- 87
Parrilla Vázquez MM,
Parrilla Vázquez P,
Martínez Galera M,
Gil García MD,
Uclés A.
Ultrasound-Assisted Ionic Liquid Dispersive Liquid–Liquid Microextraction Coupled
with Liquid Chromatography-Quadrupole-Linear Ion Trap-Mass Spectrometry for Simultaneous
Analysis of Pharmaceuticals in Wastewaters. J. Chromatogr. A 2013; 1291: 19-26
MissingFormLabel
- 88
Padinhattath S.P,
Gardas RL.
Extraction of Diclofenac Sodium from Water Using N-Benzylethanolamine Based Ionic
Liquids: Computational and Experimental Approach. J. Mol. Liq. 2023; 378 121603
MissingFormLabel
- 89
Liu JF,
Chi YG,
Peng JF,
Jiang GB,
Jönsson JÅ.
Ionic Liquids/Water Distribution Ratios of Some Polycyclic Aromatic Hydrocarbons.
J. Chem. Eng. Data 2004; 49: 1422-1424
MissingFormLabel
- 90
Fan YC,
Hu ZL,
Chen ML,
Tu CS,
Zhu Y.
Ionic Liquid Based Dispersive Liquid–Liquid Microextraction of Aromatic Amines in
Water Samples. Chin. Chem. Lett. 2008; 19: 985-987
MissingFormLabel
- 91
Pena MT,
Casais MC,
Mejuto MC,
Cela R.
Development of an Ionic Liquid Based Dispersive Liquid–Liquid Microextraction Method
for the Analysis of Polycyclic Aromatic Hydrocarbons in Water Samples. J. Chromatogr.
A 2009; 1216: 6356-6364
MissingFormLabel
- 92
AlSaleem SS,
Zahid WM,
Alnashef IM,
Haider H.
Extraction of Halogenated Hydrocarbons Using Hydrophobic Ionic Liquids. Sep. Purif.
Technol. 2017; 184: 231-239
MissingFormLabel
- 93
He L,
Luo X,
Xie H,
Wang C,
Jiang X,
Lu K.
Ionic Liquid-Based Dispersive Liquid–Liquid Microextraction Followed High-Performance
Liquid Chromatography for the Determination of Organophosphorus Pesticides in Water
Sample. Anal. Chim. Acta 2009; 655: 52-59
MissingFormLabel
- 94
Liu Y,
Zhao E,
Zhu W,
Gao H,
Zhou Z.
Determination of Four Heterocyclic Insecticides by Ionic Liquid Dispersive Liquid–Liquid
Microextraction in Water Samples. J. Chromatogr. A 2009; 1216: 885-891
MissingFormLabel
- 95
Zhang J,
Li M,
Yang M,
Peng B,
Li Y,
Zhou W,
Gao H,
Lu R.
Magnetic Retrieval of Ionic Liquids: Fast Dispersive Liquid–Liquid Microextraction
for the Determination of Benzoylurea Insecticides in Environmental Water Samples.
J. Chromatogr. A 2012; 1254: 23-29
MissingFormLabel
- 96
Zhao RS,
Wang X,
Sun J,
Wang SS,
Yuan JP,
Wang XK.
Trace Determination of Triclosan and Triclocarban in Environmental Water Samples with
Ionic Liquid Dispersive Liquid-Phase Microextraction Prior to HPLC-ESI-MS-MS. Anal.
Bioanal. Chem. 2010; 397: 1627-1633
MissingFormLabel
- 97
Zhao RS,
Wang X,
Zhang LL,
Wang SS,
Yuan JP.
Ionic Liquid/Ionic Liquid Dispersive Liquid–Liquid Microextraction, a New Sample Enrichment
Procedure for the Determination of Hexabromocyclododecane Diastereomers in Environmental
Water Samples. Anal. Methods 2011; 3: 831-836
MissingFormLabel
- 98
Bhosale VK,
Patil NV,
Kulkarni PS.
Treatment of Energetic Material Contaminated Wastewater Using Ionic Liquids. RSC Adv.
2015; 5: 20503-20510
MissingFormLabel
- 99
Yao C,
Anderson JL.
Dispersive Liquid–Liquid Microextraction Using an in Situ Metathesis Reaction to Form
an Ionic Liquid Extraction Phase for the Preconcentration of Aromatic Compounds from
Water. Anal. Bioanal. Chem. 2009; 395: 1491-1502
MissingFormLabel
- 100
López-Darias J,
Pino V,
Ayala JH,
Afonso AM.
In-Situ Ionic Liquid-Dispersive Liquid–Liquid Microextraction Method to Determine
Endocrine Disrupting Phenols in Seawaters and Industrial Effluents. Microchim. Acta
2011; 174: 213-222
MissingFormLabel
- 101
Zhong Q,
Su P,
Zhang Y,
Wang R,
Yang Y.
In-Situ Ionic Liquid-Based Microwave-Assisted Dispersive Liquid–Liquid Microextraction
of Triazine Herbicides. Microchim. Acta 2012; 178: 341-347
MissingFormLabel
- 102
Zhou Q,
Bai H,
Xie G,
Xiao J.
Trace Determination of Organophosphorus Pesticides in Environmental Samples by Temperature-Controlled
Ionic Liquid Dispersive Liquid-Phase Microextraction. J. Chromatogr. A 2008; 1188:
148-153
MissingFormLabel
- 103
Zhou Q,
Gao Y,
Xiao J,
Xie G.
Sensitive Determination of Phenols from Water Samples by Temperature-Controlled Ionic
Liquid Dispersive Liquid-Phase Microextraction. Anal. Methods 2011; 3: 653-658
MissingFormLabel
- 104
Zhang Y,
Lee HK.
Ionic Liquid-Based Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction Followed
High-Performance Liquid Chromatography for the Determination of Ultraviolet Filters
in Environmental Water Samples. Anal. Chim. Acta 2012; 750: 120-126
MissingFormLabel
- 105
Wang H,
Yang X,
Hu L,
Gao H,
Lu R,
Zhang S,
Zhou W.
Detection of Triazole Pesticides in Environmental Water and Juice Samples Using Dispersive
Liquid–Liquid Microextraction with Solidified Sedimentary Ionic Liquids. New J. Chem.
2016; 40: 4696-4704
MissingFormLabel
- 106
Zeeb M,
Farahani H.
Ionic Liquid-Based Ultrasound-Assisted In-Situ Solvent Formation Microextraction and
High-Performance Liquid Chromatography for the Trace Determination of Polycyclic Aromatic
Hydrocarbons in Environmental Water Samples. J. Appl. Chem. Res. 2018; 12: 77-91
MissingFormLabel
- 107
Vijayaraghavan R,
Vedaraman N,
Surianarayanan M,
MacFarlane DR.
Extraction and Recovery of Azo Dyes into an Ionic Liquid. Talanta 2006; 69: 1059-1062
MissingFormLabel
- 108
Li C,
Xin B,
Xu W,
Zhang Q.
Study on the Extraction of Dyes into a Room-Temperature Ionic Liquid and Their Mechanisms.
J. Chem. Technol. Biotechnol. 2007; 82: 196-204
MissingFormLabel
- 109
Othman N,
Mili N,
Zailani SN,
Aimi N,
Mohammad B.
Extraction of Remazol Brilliant Orange 3R from Textile Wastewater using Tetrabutyl
Ammonium Bromide. J. Teknol. 2010; 53: 29-39
MissingFormLabel
- 110
Zhang Z,
Zhou K,
Bu YQ,
Shan ZJ,
Liu JF,
Wu XY,
Yang LQ,
Chen ZL.
Determination of Malachite Green and Crystal Violet in Environmental Water Using Temperature-Controlled
Ionic Liquid Dispersive Liquid–Liquid Microextraction Coupled with High Performance
Liquid Chromatography. Anal. Methods 2012; 4: 429-433
MissingFormLabel
- 111
Chen X,
Li F,
Asumana C,
Yu G.
Extraction of Soluble Dyes from Aqueous Solutions with Quaternary Ammonium-Based Ionic
Liquids. Sep. Purif. Technol. 2013; 106: 105-109
MissingFormLabel
- 112
Talbi Z,
Haddou B,
Ghouas H,
Kameche M,
Derriche Z.
Gourdon, C Cationic Dye Removal from Aqueous Solutions Using Ionic Liquid and Nonionic
Surfactant-Ionic Liquid Systems: A Comparative Study Based upon Experimental Design.
Chem. Eng. Commun. 2014; 201: 41-52
MissingFormLabel
- 113
Fan J,
Fan Y,
Zhang S,
Wang J.
Extraction of Azo Dyes from Aqueous Solutions with Room Temperature Ionic Liquids.
Sep. Sci. Technol. 2011; 46: 1172-1177
MissingFormLabel
- 114
Ferreira AM,
Coutinho JA. P,
Fernandes AM,
Freire MG.
Complete Removal of Textile Dyes from Aqueous Media Using Ionic-Liquid-Based Aqueous
Two-Phase Systems. Sep. Purif. Technol. 2014; 128: 58-66
MissingFormLabel
- 115
Santos Klienchen Dalari BL,
Lisboa Giroletti C,
Malaret FJ,
Skoronski E,
P. Hallett J,
Matias WG,
Puerari RC,
Nagel-Hassemer ME.
Application of a Phosphonium-Based Ionic Liquid for Reactive Textile Dye Removal:
Extraction Study and Toxicological Evaluation. J. Environ. Manage. 2022; 304 114322
MissingFormLabel
- 116
Padinhattath SP,
Govindaraj J,
Gardas RL.
Exploring Non-Stoichiometric Pseudoprotic Ionic Liquid for Effective Elimination of
Cationic Dyes from Textile Effluent: A Circular Approach. J. Water Process Eng. 2024;
58 104921
MissingFormLabel
- 117
Dai S,
Ju YH,
Barnes CE.
Solvent Extraction of Strontium Nitrate by a Crown Ether Using Room-Temperature Ionic
Liquids, Journal of the Chemical Society. Dalton Trans. 1999; 1201-1202
MissingFormLabel
- 118
Stepinski DC,
Jensen MP,
Dzielawa JA,
Dietz ML.
Synergistic Effects in the Facilitated Transfer of Metal Ions into Room-Temperature
Ionic Liquids. Green Chem. 2005; 7: 151-158
MissingFormLabel
- 119
Luo H,
Huang JF,
Dai S.
Solvent Extraction of Sr2+and Cs+using Protic Amide-Based Ionic Liquids. Sep. Sci.
Technol. 2010; 45: 1679-1688
MissingFormLabel
- 120
Turanov AN,
Karandashev VK,
Baulin VE.
Extraction of Alkaline Earth Metal Ions with TODGA in the Presence of Ionic Liquids.
Solvent Extr. Ion Exch. 2010; 28: 367-387
MissingFormLabel
- 121
Toncheva GK,
Hristov DG,
Milcheva NP,
Gavazov KB.
Extraction-Chromogenic System for Nickel(II) Based on 5-Methyl-4-(2-Thiazolylazo)Resorcinol
and Aliquat 336. Acta Chim. Slov. 2020; 67: 151-158
MissingFormLabel
- 122
Dukov I,
Atanassova M.
Synergistic solvent extraction of Ce(III) with mixtures of chelating extractant and
quaternary ammonium salt. J. Univ. Chem. Technol. Metall. 2002; 4: 5-12
MissingFormLabel
- 123
Wankowski JL,
Dietz ML.
Ionic Liquid (IL) Cation and Anion Structural Effects on Metal Ion Extraction into
Quaternary Ammonium-Based ILs. Solvent Extr. Ion Exch. 2016; 34: 48-59
MissingFormLabel
- 124
Takahashi T,
Ito T,
Kim SY.
Extraction Behavior of Sr (II) from High-Level Liquid Waste Using Ionic Liquid Extraction
System with DtBuCH18C6. Energy Procedia 2017; 131: 170-177
MissingFormLabel
- 125
Shi C,
Jing Y,
Jia Y.
Solvent Extraction of Lithium Ions by Tri-n-Butyl Phosphate Using a Room Temperature
Ionic Liquid. J. Mol. Liq. 2016; 215: 640-646
MissingFormLabel
- 126
Shi C,
Jing Y,
Xiao J,
Wang X,
Jia Y.
Liquid–Liquid Extraction of Lithium Using Novel Phosphonium Ionic Liquid as an Extractant.
Hydrometallurgy 2017; 169: 314-320
MissingFormLabel
- 127
Deferm C,
Van De Voorde M,
Luyten J,
Oosterhof H,
Fransaer J,
Binnemans K.
Purification of Indium by Solvent Extraction with Undiluted Ionic Liquids. Green Chem.
2016; 18: 4116-4127
MissingFormLabel
- 128
Eguchi A,
Morita K,
Hirayama N.
Ionic Liquid Chelate Extraction Behavior of Trivalent Group 13 Metals into 1-Alkyl-3-methylimidazolium
Bis(trifluoromethanesulfonyl)imides Using 8-Quinolinol as Chelating Extractant. Anal.
Sci. 2019; 35: 1003-1007
MissingFormLabel
- 129
Luo D,
Zhu N,
Li Y,
Cui J,
Wu P,
Wang J.
Simultaneous Leaching and Extraction of Indium from Waste LCDs with Acidic Ionic Liquids.
Hydrometallurgy 2019; 189 105146
MissingFormLabel
- 130
Alguacil FJ,
Escudero E.
Solvent Extraction of Indium(III) from HCl Solutions by the Ionic Liquid (A324H+)(Cl−)
Dissolved in Solvesso 100. Hydrometallurgy 2019; 189 105104
MissingFormLabel
- 131
Alguacil FJ,
López FA.
Dispersion-Free Extraction of In(III) from HCl Solutions Using a Supported Liquid
Membrane Containing the HA324H+Cl− Ionic Liquid as the Carrier. Sci. Rep. 2020; 10:
13868
MissingFormLabel
- 132
Papaiconomou N,
Lee JM,
Salminen J,
von Stosch T,
Prausnitz JM.
Selective Extraction of Copper, Mercury, Silver, and Palladium Ions from Water Using
Hydrophobic Ionic Liquids. Ind. Chem. Eng. Res. 2008; 47: 5080-5086
MissingFormLabel
- 133
Kogelnig D,
Stojanovic A,
Galanski MS,
Groessl M,
Jirsa F,
Krachler R,
Keppler BK.
Greener Synthesis of New Ammonium Ionic Liquids and Their Potential as Extracting
Agents. Tetrahedron Lett. 2008; 49: 2782-2785
MissingFormLabel
- 134
Egorov VM,
Djigailo DI,
Momotenko DS,
Chernyshov DV,
Torocheshnikova II,
Smirnova SV,
Pletnev IV.
Task-Specific Ionic Liquid Trioctylmethylammonium Salicylate as Extraction Solvent
for Transition Metal Ions. Talanta 2010; 80: 1177-1182
MissingFormLabel
- 135
Rajendran A,
Ragupathy D,
Priyadarshini M,
Magesh A,
Jaishankar P,
Madhavan NS,
Sajitha K,
Balaji S.
Effective Extraction of Heavy Metals from Their Effluents Using Some Potential Ionic
Liquids as Green Chemicals. E-J. Chem. 2011; 8: 697-702
MissingFormLabel
- 136
Domańska U,
Rękawek A.
Extraction of Metal Ions from Aqueous Solutions Using Imidazolium Based Ionic Liquids.
J. Solution Chem. 2009; 8: 697-702
MissingFormLabel
- 137
Fetouhi B,
Belarbi H,
Benabdellah A,
Kasmi-Mir S,
Kirsch G.
Extraction of the heavy metals from the aqueous phase in ionic liquid 1 butyl-3-methylimidazolium
hexafluorophosphate by N-salicylideneaniline. J. Mater. Environ. Sci. 2016; 7: 746-754
https://www.jmaterenvironsci.com/Document/vol7/vol7_N3/88-JMES-1114-2014%20-Fetouhi.pdf
MissingFormLabel
- 138
Thasneema KK,
Dipin T,
Thayyil MS,
Sahu PK,
Messali M,
Rosalin T,
Elyas KK,
Saharuba PM,
Anjitha T,
Hadda TB.
Removal of Toxic Heavy Metals, Phenolic Compounds and Textile Dyes from Industrial
Waste Water Using Phosphonium Based Ionic Liquids. J. Mol. Liq. 2021; 323 114645
MissingFormLabel
- 139
Matsumoto M,
Yamaguchi T,
Tahara Y.
Extraction of Rare Earth Metal Ions with an Undiluted Hydrophobic Pseudoprotic Ionic
Liquid. Metals 2020; 10: 502
MissingFormLabel
- 140
Janssen CH. C.
Heavy Metal Extractions from NaCl Brines to Pseudoprotic Ionic Liquids. Ind. Eng.
Chem. Res. 2021; 60: 1808-1816
MissingFormLabel
- 141
Deng Y,
Ding Y,
Huang Z,
Yu Y,
He J,
Zhang Y.
Boosting the Extraction of Rare Earth Elements from Chloride Medium by Novel Carboxylic
Acid Based Ionic Liquids. J. Mol. Liq. 2021; 329 115549
MissingFormLabel
- 142
Castillo-Ramírez C,
Janssen CH. C.
Pseudo-Protic Ionic Liquids for the Extraction of Metals Relevant for Urban Mining.
Ind. Eng. Chem. Res. 2023; 62: 627-636
MissingFormLabel
- 143
Padinhattath SP,
Gardas RL.
Effective elimination of multiple heavy metal ions from wastewater using circular
liquid–liquid extraction based on trioctylammonium carboxylate ionic liquids. Sep.
Purif. Technol. 2025; 356 Part A, 129880
MissingFormLabel