RSS-Feed abonnieren
DOI: 10.1055/a-2514-4596
Association of MRI-derived Segmental Nonfunctional Liver Volume and Chronic Liver Disease
Zusammenhang zwischen MRT-abgeleitetem segmentalem nicht-funktionalem Lebervolumen und chronischer LebererkrankungAutoren
Gefördert durch: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung #188591
Abstract
Purpose
To determine whether the nonfunctional liver volume (NFLV) is an indicator of chronic liver disease (CLD).
Materials and Methods
Multiparametric 3T abdominal MRI examinations enhanced with gadobenate dimeglumine of 51 patients were included in the study and divided into two groups: patients with (n=20) and without (n=31) CLD. Pre- and postcontrast T1 relaxation times of the liver and aorta were measured in the T1 mapping sequences. Total and segmental liver volumes (Lvol) were determined using a convolutional neuronal network. The functional liver fraction (FLF) defined as [(1/T1liver postcontrast − 1/T1liver precontrast) ÷ (1/T1blood pool postcontrast − 1/T1blood pool precontrast)] × (1 − hematocrit) and the nonfunctional liver volume (NFLV) defined as (1 − FLF) × Lvol were calculated for the whole liver, segments I–III, and IV–VIII. Volumes, FLF, and NFLV were compared between the groups using the Mann-Whitney U test and receiver operation characteristics (ROC) analysis.
Results
Volumes were significantly higher in patients with CLD than without CLD for the whole liver (p<.01), segments I–III (p<.001), and segments IV–VIII (p<.01). No significant difference was found regarding FLF (p=.20–31). NFLV of the whole liver (p<.01), segments I–III (p<.001), and IV–VIII (p<.01) were significantly increased in patients with CLD. The highest AUCs were observed for Lvol (AUC=.80; p<.001) and NFLV (AUC=.78; p<.001), both in segments I–III. The optimal NFLV cutoff values for CLD were 745 ml for the whole liver (77 % sensitivity; 75% specificity), 174 ml for segments I–III (85% sensitivity; 70% specificity), and 573 ml for segments IV–VIII (77% sensitivity; 75% specificity).
Conclusion
MRI-derived nonfunctional liver volume (NFLV) is helpful for early detection of imaging changes in CLD. NFLV is highly associated with CLD, notably when measured in the liver segments I–III.
Key Points
- 
               
               
MRI-derived NFLV may be useful for early detection of CLD.
 - 
               
               
NFLV is significantly higher in patients with CLD than those without.
 - 
               
               
The best AUC was obtained when NFLV was calculated for segments I–III.
 
Citation Format
- 
               
               
Ardoino M, Zbinden L, Klaus JB et al. Association of MRI-derived Segmental Nonfunctional Liver Volume and Chronic Liver Disease. Rofo 2025; 197: 1300–1310
 
Zusammenfassung
Ziel
Überprüfen, ob das nicht-funktionelle Lebervolumen (NFLV) ein Indikator für chronische Lebererkrankung (CLD) ist.
Material und Methoden
In die Studie wurden 51 multiparametrische 3T-MRT-Untersuchungen des Abdomens mit Gadobenatdimeglumin eingeschlossen und in zwei Gruppen aufgeteilt: Patienten mit (n=20) und ohne (n=31) CLD. Die T1-Relaxationszeiten von der Leber und Aorta vor und nach Kontrastmittelgabe wurden auf den T1 mapping sequences gemessen. Das Gesamtvolumen der Leber und die segmentalen Lebervolumina (Lvol) wurden mit einem Convolutional Neuronal Network bestimmt. Der funktionelle Leberanteil (FLF), definiert als [(1/T1Leber postkontrast − 1/T1Leber präkontrast) ÷ (1/T1Blutpool postkontrast − 1/T1Blutpool präkontrast)] × (1 − Hämatokrit) und das nichtfunktionelle Lebervolumen (NFLV), definiert als (1 − FLF) × Lvol, wurden für die gesamte Leber, Segmente I–III und IV–VIII berechnet. Lebervolumen, FLF und NFLV wurden mittels Mann-Whitney-U-Test und der ROC-Analyse (Receiver Operation Characteristics) zwischen den Gruppen verglichen.
Ergebnisse
Das Volumen der Gesamtleber (p<.01), der Segmente I–III (p<.001) und der Segmente IV–VIII (p<.01) waren bei Patienten mit CLD signifikant höher als bei Patienten ohne CLD. Für die FLF wurde kein signifikanter Unterschied gefunden (p=.20–31). Die NFLV der gesamten Leber (p<.01), der Segmente I–III (p<.001) und IV–VIII (p<.01) waren bei Patienten mit CLD signifikant höher als bei Patienten ohne CLD. Die höchste AUC-Werte ergaben sich für Lvol (AUC=.80; p<.001) und NFLV (AUC=.78; p<.001), beide in den Segmenten I–III. Die optimalen Cutoff-Werte der NFLV für CLD waren 745 ml für die gesamte Leber (77% Sensitivität; 75% Spezifität), 174 ml für die Segmente I–III (85% Sensitivität; 70% Spezifität) und 573 ml für die Segmente IV–VIII (77% Sensitivität; 75% Spezifität).
Schlussforderung
Das mittels MRT bestimmte, nicht-funktionelle Lebervolumen (NFLV) ist für die frühzeitige Erkennung von bildgebenden Veränderungen der CLD geeignet. Das NFLV ist in hohem Maße mit CLD assoziiert, vor allem wenn es in den Lebersegmenten I–III gemessen wird.
Kernaussagen
- 
               
               
Das mittels MRT bestimmte NFLV ist für die CLD-Früherkennung nützlich.
 - 
               
               
Das NFLV ist bei Patienten mit CLD signifikant höher als bei Patienten ohne CLD.
 - 
               
               
Die beste AUC wurde mit der NFLV der Segmente I–III erzielt.
 
Publikationsverlauf
Eingereicht: 29. Juli 2024
Angenommen nach Revision: 08. Januar 2025
Artikel online veröffentlicht:
10. März 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
- 
            
References
 - 1 Moon AM, Singal AG, Tapper EB. Contemporary Epidemiology of Chronic Liver Disease and Cirrhosis. Clinical Gastroenterology and Hepatology 2020; 18: 2650-2666
 - 2 Asrani SK, Devarbhavi H, Eaton J. et al. Burden of liver diseases in the world. Journal of Hepatology 2019; 70: 151-171
 - 3 Horowitz JM, Venkatesh SK, Ehman RL. et al. Evaluation of hepatic fibrosis: A review from the society of abdominal radiology disease focus panel. Abdom Radiol 2017; 42: 2037-2053
 - 4 Kupczyk PA, Mesropyan N, Isaak A. et al. Quantitative MRI of the liver: Evaluation of extracellular volume fraction and other quantitative parameters in comparison to MR elastography for the assessment of hepatopathy. Magn Reson Imaging 2021; 77: 7-13
 - 5 Almpanis Z. Evaluation of liver fibrosis: “Something old, something new…”. Ann Gastroenterol 2016; 29: 445-453
 - 6 Lurie Y, Webb M, Cytter-Kuint R. et al. Non-invasive diagnosis of liver fibrosis and cirrhosis. World J Gastroenterol 2015; 21: 11567
 - 7 Zhang YN, Fowler KJ, Ozturk A. et al. Liver fibrosis imaging: A clinical review of ultrasound and magnetic resonance elastography. J Magn Reson Imaging 2020; 51: 25-42
 - 8 Lubner MG, Pickhardt PJ. Multidetector Computed Tomography for Retrospective, Noninvasive Staging of Liver Fibrosis. Gastroenterol Clin North Am 2018; 47: 569-584
 - 9 Obmann VC, Marx C, Hrycyk J. et al. Liver segmental volume and attenuation ratio (LSVAR) on portal venous CT scans improves the detection of clinically significant liver fibrosis compared to liver segmental volume ratio (LSVR). Abdom Radiol 2021; 46: 1912-1921
 - 10 Furusato Hunt OM, Lubner MG, Ziemlewicz TJ. et al. The Liver Segmental Volume Ratio for Noninvasive Detection of Cirrhosis: Comparison With Established Linear and Volumetric Measures. J Comput Assist Tomogr 2016; 40: 478-484
 - 11 Awaya H, Mitchell DG, Kamishima T. et al. Cirrhosis: Modified Caudate-Right Lobe Ratio. Radiology 2002; 224: 769-774
 - 12 Pickhardt PJ, Malecki K, Hunt OF. et al. Hepatosplenic volumetric assessment at MDCT for staging liver fibrosis. Eur Radiol 2017; 27: 3060-3068
 - 13 Hoad CL, Palaniyappan N, Kaye P. et al. A study of T1 relaxation time as a measure of liver fibrosis and the influence of confounding histological factors. NMR Biomed 2015; 28: 706-714
 - 14 Luetkens JA, Klein S, Träber F. et al. Quantification of Liver Fibrosis at T1 and T2 Mapping with Extracellular Volume Fraction MRI: Preclinical Results. Radiology 2018; 288: 748-754
 - 15 Obmann VC, Berzigotti A, Catucci D. et al. T1 mapping of the liver and the spleen in patients with liver fibrosis – does normalization to the blood pool increase the predictive value?. Eur Radiol 2021; 31: 4308-4318
 - 16 Mesropyan N, Kupczyk P, Dold L. et al. Non-invasive assessment of liver fibrosis in autoimmune hepatitis: Diagnostic value of liver magnetic resonance parametric mapping including extracellular volume fraction. Abdom Radiol 2021; 46: 2458-2466
 - 17 Obmann VC, Catucci D, Berzigotti A. et al. T1 reduction rate with Gd-EOB-DTPA determines liver function on both 1.5 T and 3 T MRI. Sci Rep 2022; 12: 4716
 - 18 Peters AA, Wagner B, Spano G. et al. Myocardial scar detection in free-breathing Dixon-based fat- and water-separated 3D inversion recovery late-gadolinium enhancement whole heart MRI. Int J Cardiovasc Imaging 2022; 39: 135-144
 - 19 Klaus JB, Goerke U, Klarhöfer M. et al. MRI Dixon Fat-Corrected Look-Locker T1 Mapping for Quantification of Liver Fibrosis and Inflammation – A Comparison With the Non-Fat-Corrected Shortened Modified Look-Locker Inversion Recovery Technique. Invest Radiol 2024;
 - 20 Guimaraes AR, Siqueira L, Uppal R. et al. T2 relaxation time is related to liver fibrosis severity. Quant Imaging Med Surg 2016; 6: 103-114
 - 21 Chow AM, Gao DS, Fan SJ. et al. Measurement of liver T1 and T2 relaxation times in an experimental mouse model of liver fibrosis. J Magn Reson Imaging 2012; 36: 152-158
 - 22 Obmann VC, Ardoino M, Klaus J. et al. MRI Extracellular Volume Fraction in Liver Fibrosis – A Comparison of Different Time Points and Blood Pool Measurements. J Magn Reson Imaging 2024; jmri.29259
 - 23 Sharma A, Nagalli S. Chronic Liver Disease. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2021. Zugriff am 24. Mai 2021 unter: http://www.ncbi.nlm.nih.gov/books/NBK554597/
 - 24 Zbinden L, Catucci D, Suter Y. et al. Convolutional neural network for automated segmentation of the liver and its vessels on non-contrast T1 vibe Dixon acquisitions. Sci Rep 2022; 12: 22059
 - 25 Zbinden L, Catucci D, Suter Y. et al. Automated liver segmental volume ratio quantification on non-contrast T1-Vibe Dixon liver MRI using deep learning. Eur J Radiol 2023; 167: 111047
 - 26 Ünal E, Akata D, Karcaaltincaba M. Liver Function Assessment by Magnetic Resonance Imaging. Semin Ultrasound CT MR 2016; 37: 549-560
 - 27 Liu P, Li P, He W. et al. Liver and spleen volume variations in patients with hepatic fibrosis. World J Gastroenterol 2009; 15: 3298
 - 28 Tarao K, Hoshino H, Motohashi I. et al. Changes in liver and spleen volume in alcoholic liver fibrosis of man. Hepatology 1989; 9: 589-593
 - 29 Kromrey ML, Ittermann T, vWahsen C. et al. Reference values of liver volume in Caucasian population and factors influencing liver size. Eur J Radiol 2018; 106: 32-37
 - 30 Patzak M, Porzner M, Oeztuerk S. et al. Assessment of liver size by ultrasonography: Sonographic Liver Size. J Clin Ultrasound 2014; 42: 399-404
 
    
      
    