RSS-Feed abonnieren

DOI: 10.1055/a-2505-6356
Aqueous Mixtures of Deep Eutectic Solvents: Tuning the Reaction Medium and Photocatalyst for Highly Selective Amine Oxidation
Funding information Mahatma Jyotiba Phule Research & Training Institute (MAHAJYOTI)—Mahatma Jyotiba Phule Research Fellowship-2022 (MAHAJYOTI/2022/ Ph.D. Fellow/1002).

Abstract
Harvesting light as a source of energy for driving chemical processes is an important aspect of tacking the looming energy crisis. The challenge lies in making the process sustainable while retaining the efficiency and selectivity. In this work, deep eutectic solvents and their aqueous mixtures are used to replace acetonitrile as the reaction medium for the photocatalyzed amine oxidation. It is observed that the use of deep eutectic solvents as reaction media leads to >90% conversion but presents issues with efficient workup due to high viscosity. The use of water a cosolvent mitigates the issue. Further modification of the catalyst surface with alizarin enables the use of higher water content (in a 1:1 ratio) and leads to high conversion (>90%) at one-tenth of irradiation intensity. The high yield and selectivity eliminate the need for tedious purification steps to isolate the product. Control experiments indicate cooperative contributions by TiO2, 2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO), and alizarin as mechanistic factors responsible for the enhanced reactivity.
Keywords
Deep eutectic solvent - Aqueous mixture - Photocatalysis - Amine oxidation - Heterogeneous catalysisSupplementary Material
- Supplementary Material is available at https://doi.org/10.1055/a-2505-6356.
- Ergänzendes Material
Publikationsverlauf
Eingereicht: 24. September 2024
Angenommen nach Revision: 16. Dezember 2024
Accepted Manuscript online:
18. Dezember 2024
Artikel online veröffentlicht:
22. Januar 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
Varsha S. Kare, Shraeddha S. Tiwari. Aqueous Mixtures of Deep Eutectic Solvents: Tuning the Reaction Medium and Photocatalyst for Highly Selective Amine Oxidation. Sustainability & Circularity NOW 2025; 02: a25056356.
DOI: 10.1055/a-2505-6356
-
References
- 1
Choudhury LH,
Parvin T.
Tetrahedron. 2011; 67: 8213-8228
MissingFormLabel
- 2
Martin SF.
Pure Appl. Chem.. 2009; 81: 195-204
MissingFormLabel
- 3
Yamamoto Y,
Kodama S,
Nomoto A,
Ogawa A.
Org. Biomol. Chem.. 2022; 20: 9503-9521
MissingFormLabel
- 4
Chen B,
Wang L,
Gao S.
ACS Catal.. 2015; 5: 5851-5876
MissingFormLabel
- 5
Lang X,
Ji H,
Chen C,
Ma W,
Zhao J.
Angew. Chem., Int. Ed.. 2011; 50: 3934-3937
MissingFormLabel
- 6
Lang X,
Ma W,
Zhao Y,
Chen C,
Ji H,
Zhao J.
Chem. – Eur. J.. 2012; 18: 2624-2631
MissingFormLabel
- 7
Li N,
Lang X,
Ma W,
Ji H,
Chen C,
Zhao J.
Chem. Commun.. 2013; 49: 5034
MissingFormLabel
- 8
Sheng W,
Wang X,
Wang Y,
Chen S,
Lang X.
ACS Catal.. 2022; 12: 11078-11088
MissingFormLabel
- 9
Shi J.-L,
Hao H,
Li X,
Lang X.
Catal. Sci. Technol.. 2018; 8: 3910-3917
MissingFormLabel
- 10
Shi JL,
Hao H,
Lang X.
Sustain. Energy Fuels. 2019; 3: 488-498
MissingFormLabel
- 11
Li X,
Lang X.
J. Chem. Phys.. 2020; 152: 044705
MissingFormLabel
- 12
Wang Z,
Richter SM,
Rozema MJ,
Schellinger A,
Smith K,
Napolitano JG.
Org. Process Res. Dev.. 2017; 21: 1501-1508
MissingFormLabel
- 13
Hazra S,
Malik E,
Nair A,
Tiwari V,
Dolui P,
Elias AJ.
Chem. – Asian J.. 2020; 15: 1916-1936
MissingFormLabel
- 14
Zhao W,
Yang C,
Zhang X,
Deng Y,
Han C,
Ma Z,
Wang L,
Ye L.
ChemSusChem. 2020; 13: 116-120
MissingFormLabel
- 15
Gautam A,
Khajone VB,
Bhagat PR,
Kumar S,
Patle DS.
Environ. Chem. Lett.. 2023; 21: 3105-3126
MissingFormLabel
- 16
Sheikh Asadi AM,
Cichocki Ł,
Atamaleki A,
Hashemi M,
Lutze H,
Imran M,
Kong L,
Wang C,
Boczkaj G.
Water Resour. Ind.. 2024; 31: 100251
MissingFormLabel
- 17
Zhang Q,
De Oliveira Vigier K,
Royer S,
Jérôme F.
Chem. Soc. Rev.. 2012; 41: 7108
MissingFormLabel
- 18
Francisco M,
van den Bruinhorst A,
Kroon MC.
Angew. Chem., Int. Ed.. 2013; 52: 3074-3085
MissingFormLabel
- 19
Guajardo N,
Müller CR,
Schrebler R,
Carlesi C,
Domínguez de María P.
ChemCatChem. 2016; 8: 1020-1027
MissingFormLabel
- 20
Smith EL,
Abbott AP,
Ryder KS.
Chem. Rev.. 2014; 114: 11060-11082
MissingFormLabel
- 21
Valvi A,
Tiwari S.
Eur. J. Org. Chem.. 2018; 2018: 4933-4939
MissingFormLabel
- 22
Valvi A,
Tiwari S.
ChemistrySelect. 2021; 6: 249-254
MissingFormLabel
- 23
Allan MG,
Pichon T,
McCune JA,
Cavazza C,
Le Goff A,
Kühnel MF.
Angew. Chem., Int. Ed.. 2023; 62: e202219176
MissingFormLabel
- 24
Gao J,
Meng Y,
Benton A,
He J,
Jacobsohn LG,
Tong J,
Brinkman KS.
ACS Appl. Mater. Interfaces. 2020; 12: 38012-38018
MissingFormLabel
- 25
Wang X,
Wang Y,
Li H.
Asian J. Org. Chem.. 2023; 12: e202300475
MissingFormLabel
- 26
Li X,
Hao H,
Lang X.
J. Colloid Interface Sci.. 2021; 581: 826-835
MissingFormLabel
- 27
Deshmukh SA,
Bhagat PR.
ChemistrySelect. 2022; 7: e202200189
MissingFormLabel