Subscribe to RSS
DOI: 10.1055/a-2462-2419
Radiation protection and personal dosimetry in a core facility for multimodal small animal imaging
Article in several languages: English | deutsch
Abstract
Background
Clinical imaging techniques such as positron emission tomography (PET) in combination with computed tomography (CT) are increasingly being used in biomedical research involving small animal models. The handling of open radioactive substances (radiopharmaceuticals) necessary for PET imaging requires prior official authorization for handling, the application of radiation protection principles, and regular training. The overriding aim of radiation protection is to protect the personnel directly involved, other persons, and the environment from the harmful effects of ionizing radiation.
Method
This paper aims to provide an overview of the regulatory requirements of the Radiation Protection Act (StrlSchG), the Radiation Protection Ordinance (StrlSchV), and the associated standards and guidelines. Furthermore, their implementation in practical work in small animal imaging using PET/CT is shown. We will focus on the individual steps of the imaging process, from delivery of the radiopharmaceuticals to waste disposal. This should provide interested researchers with an initial overview of the safe and successful use of the method. In addition, exposure values from the last six years in the literature were analyzed. While personal dosimetric monitoring in clinical PET/CT imaging has been extensively published, there is no published data known to us for personnel for PET/CT research with small animals. The evaluation of the personal dosimetric monitoring of our small animal imaging facility with 7 employees over 4 years revealed an increased personal and finger dose normalized to the injected activity and compared to human PET/CT imaging. Nevertheless, the annual personal dose or annual finger dose in small animal imaging (Hp(10): 1.7 mSv, Hp(0.07): 64 mSv) is lower than for personnel performing human PET/CT imaging at the local University Department of Nuclear Medicine (Hp(10): 3.8 mSv, Hp(0.07): 156 mSv) or published values, and is well below the legally permissible maximum dose of 20 or 500 mSv per year.
Conclusion
The increasing use of PET/CT in small animal research can be safely utilized if the radiation protection principles are implemented and continuously trained.
Key Points
-
PET/CT imaging in small animals is increasingly used in biomedical research.
-
Radiation protection laws and guidelines have to be known and are relevant in animal experiments.
-
Compared to published values from human medicine, activity-specific employee doses are increased in the presented imaging facility.
-
The legal personal dose in the studied imaging facility is below legal limits.
Citation Format
-
Schildt A, Sänger P, Lütgens M et al. Radiation protection and personal dosimetry in a core facility for multimodal small animal imaging. Fortschr Röntgenstr 2024; DOI 10.1055/a-2462-2419
Publication History
Received: 10 June 2024
Accepted after revision: 03 October 2024
Article published online:
04 December 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Beckmann N, Kneuer R, Gremlich HU. et al. In vivo mouse imaging and spectroscopy in drug discovery. NMR Biomed 2007; 20: 154-185
- 2 Pomper MG. Translational molecular imaging for cancer. Cancer Imaging 2005; 5 Spec No A: S16-26
- 3 Lauber DT, Fülöp A, Kovács T. et al. State of the art in vivo imaging techniques for laboratory animals. Lab Anim 2017; 51: 465-478
- 4 Marengo M, Martin CJ, Rubow S. et al. Radiation Safety and Accidental Radiation Exposures in Nuclear Medicine. Semin Nucl Med 2022; 52: 94-113
- 5 Kiessling F, Pichler BJ. Small Animal Imaging. Dordrecht: Springer; 2010
- 6 D'Elia A, Schiavi S, Soluri A. et al. Role of Nuclear Imaging to Understand the Neural Substrates of Brain Disorders in Laboratory Animals: Current Status and Future Prospects. Front Behav Neurosci 2020; 14: 596509
- 7 Cunha L, Dabin J, Leide-Svegborn S. et al. Extremity exposure of nuclear medicine workers: results from an EANM and EURADOS survey. Q J Nucl Med Mol Imaging 2023; 67: 29-36
- 8 Wrzesień M, Napolska K. Investigation of radiation protection of medical staff performing medical diagnostic examinations by using PET/CT technique. J Radiol Prot 2015; 35: 197-207
- 9 Smart R. Task-specific monitoring of nuclear medicine technologists’ radiation exposure. Radiat Prot Dosimetry 2004; 109: 201-209
- 10 DIN 25422:2021–05, Aufbewahrung und Lagerung sonstiger radioaktiver Stoffe – Anforderungen an Aufbewahrungseinrichtungen und deren Aufstellungsräume zum Strahlen-, Brand- und Diebstahlschutz. Berlin: Beuth Verlag GmbH;
- 11 DIN 25425–1:2016–10, Radionuklidlaboratorien – Teil 1: Regeln für die Auslegung. Berlin: Beuth Verlag GmbH;
- 12 DIN 25425–3:2019–12, Radionuklidlaboratorien – Teil 3: Regeln für den vorbeugenden Brandschutz. Berlin: Beuth Verlag GmbH;
- 13 Richtlinie über die im Strahlenschutz erforderliche Fachkunde (Fachkunde-Richtlinie Technik nach Strahlenschutzverordnung). GMBl. 2004, Nr. 40/41, S. 799, geändert am 19. April 2006 (GMBl. 2006, Nr. 38, S. 735.
- 14 Strahlenschutzverordnung vom 29. November 2018 (BGBl. I S. 2034, 2036; 2021 I S. 5261), die zuletzt durch Artikel 1 der Verordnung vom 10. Januar 2024 (BGBl. 2024 I Nr. 8) geändert worden ist.
- 15 Strahlenschutzgesetz vom 27. Juni 2017 (BGBl. I S. 1966), das zuletzt durch Artikel 2 des Gesetzes vom 20. Mai 2021 (BGBl. I S. 1194; 2022 I 15) geändert worden ist.
- 16 BMUB-Richtlinie für die physikalische Strahlenschutzkontrolle zur Ermittlung der Körperdosen, Teil 2: Ermittlung der Körperdosis bei innerer Strahlenexposition (Inkorporationsüberwachung) (§§ 40, 41 und 42 StrlSchV). GMBl 2007; 623
- 17 König AM, Etzel R, Thomas RP. et al. Persönliche Strahlenschutzmittel und Dosimetrie des medizinischen Personals in der interventionellen Radiologie: Aktueller Status und neue Entwicklungen. Rofo 2019; 191: 512-521
- 18 Europäisches Übereinkommen über die internationale Beförderung gefährlicher Güter auf der Straße vom 30. September 1957 (BGBl. 1969 II S. 1491). ADR.
- 19 Gesetz zu dem Europäischen Übereinkommen vom 30. September 1957 über die internationale Beförderung gefährlicher Güter auf der Straße (ADR) vom 18. August 1969 (BGBl. 1969 II S. 1489), das zuletzt durch Artikel 486 der Verordnung vom 31. August 2015 (BGBl. I S. 1474) geändert worden ist.
- 20 Bundesamt für Strahlenschutz. Strahlenschutz beim Umgang mit Betastrahlern in der Nuklearmedizin einschließlich der Positronen-Emissions-Tomografie (PET). Accessed March 21, 2024 at: https://www.bfs.de/SharedDocs/Downloads/BfS/DE/broschueren/ion/fachinfo/strahlenschutz-umgang-mit-betastrahlern.pdf?__blob=publicationFile&v=8
- 21 Dülsner A, Greweling-Pils M, Hack R. et al. Fachinformation-Injektionsvolumina 2022. Empfehlung zur Substanzapplikation bei Versuchstieren (März 2017). Accessed March 25, 2024 at: https://www.gv-solas.de/wp-content/uploads/2017/03/Fachinformation-Injektionsvolumina_2022.pdf
- 22 Vargas Castrillón S, Cutanda Henríquez F. A study on occupational exposure in a PET/CT facility. Radiat Prot Dosimetry 2011; 147: 247-249
- 23 Seierstad T, Stranden E, Bjering K. et al. Doses to nuclear technicians in a dedicated PET/CT centre utilising 18F fluorodeoxyglucose (FDG). Radiat Prot Dosimetry 2007; 123: 246-249
- 24 Adliene D, Griciene B, Skovorodko K. et al. Occupational radiation exposure of health professionals and cancer risk assessment for Lithuanian nuclear medicine workers. Environ Res 2020; 183: 109144
- 25 Costa PF, Reinhardt M, Poppe B. OCCUPATIONAL EXPOSURE FROM F-18-FDG PET/CT: IMPLEMENTATION TO ROUTINE CLINICAL PRACTICE. Radiat Prot Dosimetry 2018; 179: 291-298
- 26 Eakins J, Hager L, O’Connor U. et al. Personal dosimetry for positron emitters, and occupational exposures from clinical use of gallium-68. J Radiol Prot 2022; 42
- 27 Farkas J, Martin M, Nielsen C. et al. The Effects on Technologist Occupational Exposure in PET/CT Departments When Working with Students at Various Levels of Supervision. J Nucl Med Technol 2020; 48: 214-217
- 28 Kollaard R, Zorz A, Dabin J. et al. Review of extremity dosimetry in nuclear medicine. J Radiol Prot 2021; 41
- 29 McCann A, Cherbuin N, Covens P. et al. Finger doses due to68Ga-labelled pharmaceuticals in PET departments-results of a multi-centre pilot study. J Radiol Prot 2023; 43
- 30 Mosima L, Muzamhindo N, Lundie M. et al. Radiation exposure of Staff handling 18Fluorine-Fluorodeoxyglucose in a new positron emission tomography/computed tomography centre. Health SA 2023; 28: 2211
- 31 Pavičar B, Davidović J, Petrović B. et al. Nuclear medicine staff exposure to ionising radiation in 18F-FDG PET/CT practice: a preliminary retrospective study. Arh Hig Rada Toksikol 2021; 72: 216-224
- 32 Riveira-Martin M, Struelens L, Schoonjans W. et al. Occupational radiation exposure assessment during the management of 68GaGa-DOTA-TOC. EJNMMI Phys 2022; 9: 75
- 33 Soret M, Maisonobe JA, Payen S. et al. Radiation dose of nuclear medicine technicians performing PET/MR. J Radiol Prot 2020; 40: 861-866
- 34 Soret M, Maisonobe JA, Payen S. et al. Radiation dose to nuclear medicine technologists when operating PET/MR compared with PET/CT. J Radiol Prot 2022; 42
- 35 Yin WW, Zheng XW, Wang ZQ. et al. Ambient and personnel occupational dose assessment in a Hospital's PET/CT center. Appl Radiat Isot 2021; 169: 109466