Synlett, Inhaltsverzeichnis Synlett 2025; 36(08): 1079-1085DOI: 10.1055/a-2460-8054 letter TfOH-Catalyzed Synthesis of Bis(pyrrolo[2,1-a]isoquinolinyl) methanes Jing Zhou , Xue Sheng , Yu-Yi Pan , Hai-Lei Cui ∗ Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract The synthesis of bis(pyrrolo[2,1-a]isoquinolinyl)methanes was achieved through TfOH-catalyzed sequential Friedel–Crafts alkylation of pyrrolo[2,1-a]isoquinoline and aldehyde. A series of highly functionalized bis(pyrrolo[2,1-a]isoquinolinyl)methane derivatives can be obtained in acceptable to excellent yields (11 examples, up to 96% yield). Interestingly, deformylation was observed when treating pyrrolo[2,1-a]isoquinoline-derived aldehyde and indole under the current reaction conditions. Furthermore, the replacement of aldehyde with isatin resulted in the formation of methylene-bridged dimeric pyrrolo[2,1-a]isoquinoline. Key word Key wordaldehyde - bis(pyrrolo[2,1-a]isoquinolinyl)methane - deformylation - pyrrolo[2,1-a]isoquinoline - TfOH Volltext Referenzen References and Notes 1 Present address: Guangdong Sanvochemical Industry Technology Co., Ltd., Zhongshan, Guangdong 528429, P. R. of China. 2a Song S, Li X, Wei J, Wang W, Zhang Y, Ai L, Zhu Y, Shi X, Zhang X, Jiao N. Nat. Catal. 2020; 3: 107 2b Mondal H, Patra S, Saha S, Nayak T, Sengupta U, Maji MS. Angew. Chem. Int. Ed. 2023; 62: e202312597 2c Cui H.-L. Recent Progress in the Modification of Heterocycles Based on the Transformation of DMSO. In Targets in Heterocyclic Systems – Chemistry and Properties, Vol. 26. Attanasi OA, Gabriele B, Spinelli D. Societa Chimica Italiana; Roma: 2022: 222-248 3a Pindur U, Lemster T. Curr. Med. Chem. 2001; 8: 1681 3b Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489 4 Shiri M, Zolfigol MA, Kruger HG, Tanbakouchian Z. Chem. Rev. 2010; 110: 2250 5a Veluri V, Oka I, Wagner-Döbler I, Laatsch H. J. Nat. Prod. 2003; 66: 1520 5b Marrelli M, Cachet X, Conforti F, Sirianni R, Chimento A, Pezzi V, Michel S, Statti GA, Menichini F. Nat. Prod. Res. 2013; 27: 2039 5c Lee J. Nutr. Cancer 2019; 71: 992 6a Briñas RP, Brückner C. Synlett 2001; 442 6b Zaidi SH, Fico RM. Jr, Lindsey JS. Org. Process Res. Dev. 2006; 10: 118 6c Jurásek M, Rimpelová S, Kmoníčková E, Drasar P, Ruml T. J. Med. Chem. 2014; 57: 7947 7a Gu D.-G, Ji S.-J, Jiang Z.-Q, Zhou M.-F, Loh T.-P. Synlett 2005; 959 7b Yang T, Lu H, Shu Y, Ou Y, Hong L, Au C.-T, Qiu R. Org. Lett. 2020; 22: 827 7c Qu H.-E, Xiao C, Wang N, Yu K.-H, Hu Q.-S, Liu L.-X. Molecules 2011; 16: 3855 7d Ji S.-J, Zhou M.-F, Gu D.-G, Jiang Z.-Q, Loh T.-P. Eur. J. Org. Chem. 2004; 1584 7e Roy SR, Nijamudheen A, Pariyar A, Ghosh A, Vardhanapu PK, Mandal PK, Datta A, Mandal SK. ACS Catal. 2014; 4: 4307 7f Chen L, Wang C, Zhou L, Sun J. Adv. Synth. Catal. 2014; 356: 2224 7g Mendes SR, Thurow S, Penteado F, da Silva MS, Gariani RA, Perin G, Lenardão EJ. Green Chem. 2015; 17: 4334 8a Jaratjaroonphong J, Tuengpanya S, Ruengsangtongkul S. J. Org. Chem. 2015; 80: 559 8b Butin AV, Smirnov S, Trushkov IV. Tetrahedron Lett. 2008; 49: 20 8c Uchuskin MG, Molodtsova NV, Abaev VT, Trushkov IV, Butin AV. Tetrahedron 2012; 68: 4252 9a Genovese S, Epifano F, Pelucchini C, Curini M. Eur. J. Org. Chem. 2009; 1132 9b Leng Y, Chen F, Zuo L, Duan W. Tetrahedron Lett. 2010; 51: 2370 10a Jagessar RC, Tour JM. Org. Lett. 2000; 2: 111 10b Rohand T, Baruah M, Qin W, Dehaen W. Chem. Commun. 2006; 266 10c Mane SB, Hung C.-H. Chem. Eur. J. 2015; 21: 4825 11a Boroujeni KP, Ghasemi P. Catal. Commun. 2013; 37: 50 11b Yang C, Su W.-Q, Xu D.-Z. RSC Adv. 2016; 6: 99656 11c Khurana JM, Kumar S. Tetrahedron Lett. 2009; 50: 4125 11d Liu Z, Yin S, Zhong R, Zhu W, Fu P. ACS Sustainable Chem. Eng. 2022; 10: 655 12 Podder S, Choudhury J, Roy UK, Roy S. J. Org. Chem. 2007; 72: 3100 13a Genovese S, Epifano F, Pelucchini C, Curini M. Eur. J. Org. Chem. 2009; 1132 13b Barbero M, Cadamuro S, Dughera S, Magistris C, Venturello P. Org. Biomol. Chem. 2011; 9: 8393 13c Kumar GS, Kumar AS, Swetha A, Babu BM, Meshram HM. Synlett 2015; 26: 631 13d Nam SM, Jang YS, Son GE, Song CH, In I, Park CP. Tetrahedron Lett. 2020; 61: 152178 14a Tran PH, Nguyen X.-TT, Chau D.-KN. Asian J. Org. Chem. 2018; 7: 232 14b Beltrá J, Gimeno MC, Herrera RP. Beilstein J. Org. Chem. 2014; 10: 2206 14c Rad-Moghadam K, Sharifi-Kiasaraie M. Tetrahedron 2009; 65: 8816 14d Ke B, Qin Y, Wang Y, Wang F. Synth Commun. 2005; 35: 1209 14e Liao B.-S, Chen J.-T, Liu S.-T. Synthesis 2007; 3125 15a Simha PR. S, Mangali MS. M, Gari DK, Venkatapuram P, Adivireddy P. J. Heterocycl. Chem. 2017; 54: 2717 15b Shi X.-L, Xing X, Lin H, Zhang W. Adv. Synth. Catal. 2014; 356: 2349 15c Chakrabarty M, Mukherjee R, Mukherji A, Arima S, Hargaya Y. Heterocycles 2006; 68: 1659 16a Andersen RJ, Faulkner DJ, He C.-h, Duyne GD. V, Clardy J. J. Am. Chem. Soc. 1985; 107: 5492 16b Pässler U, Knölker H.-J. The Pyrrolo[2,1-a]isoquinoline Alkaloids . In The Alkaloids: Chemistry and Biology, Vol. 70 . Knölker H.-J. Academic Press; London: 2011: 79-151 16c Banwell M, Lan P. In Targets in Heterocyclic Systems – Chemistry and Properties, Vol. 24 . Attanasi OA, Spinelli D. Società Chimica Italiana; Roma: 2020: 208-226 16d Fan H, Peng J, Hamann MT, Hu JF. Chem. Rev. 2008; 108: 264 16e Fukuda T, Ishibashi F, Iwao M. Heterocycles 2011; 83: 491 16f Cui H.-L. Org. Biomol. Chem. 2022; 20: 2779 17a Matveeva MD, Purgatorio R, Voskressensky LG, Altomare CD. Future Med. Chem. 2019; 11: 2735 17b Bailly C. Mar. Drugs 2015; 13: 1105 17c Reyes-Gutiérrez PE, Camacho JR, Ramírez-Apan MT, Osornio YM, Martínez R. Org. Biomol. Chem. 2010; 8: 4374 18a Gao Q, Zhang J, Wu X, Liu S, Wu A. Org. Lett. 2015; 17: 134 18b Abe T, Ikeda T, Itoh T, Hatae N, Toyota E, Ishikura M. Heterocycles 2014; 88: 187 18c Patel OP. S, Anand D, Maurya RK, Yadav PP. J. Org. Chem. 2016; 81: 7626 18d Liu P, Shen Z, Yuan Y, Sun P. Org. Biomol. Chem. 2016; 14: 6523 18e Zhu Y.-p, Liu M.-c, Jia F.-c, Yuan J.-j, Gao Q.-h, Lian M, Wu A.-x. Org. Lett. 2012; 14: 3392 18f Kour J, Venkateswarlu V, Verma PK, Hussain Y, Dubey G, Bharatam PV, Sahoo SC, Sawant SD. J. Org. Chem. 2020; 85: 4951 19a Li J.-Q, Chen X.-H, Cui H.-L. J. Org. Chem. 2022; 87: 2421 19b Li W.-Z, Zhang W, Chen X.-H, Wang Z.-D, Cui H.-L. J. Org. Chem. 2022; 87: 11491 20a Cui H.-L, Deng H.-Q, Lei J.-J. Tetrahedron 2017; 73: 7282 20b Cui H.-L, Liu S.-W, Xiao X. J. Org. Chem. 2020; 85: 15382 21 CCDC 2132856 (3a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures 22a Zhuo C, Song R, Liu Z, Xiang Q, Yang D, Si W, Lv J. Org. Chem. Front. 2021; 8: 6400 22b Iwata T, Kawano R, Fukami T, Shindo M. Chem. Eur. J. 2022; 28: e202104160 22c Tu Y.-P. J. Org. Chem. 2006; 71: 5482 23 General Procedure for the Synthesis of Compounds 3 To a stirring solution of pyrrolo[2,1-a]isoquinoline 1 (0.2 mmol, 1.0 equiv) and aldehyde 2 (0.5 mmol, 2.5 equiv) in DMF (0.2 M, 0.5 mL), TfOH (4.4 μL, 0.05 mmol, 25 mol%) was added. The resulting reaction mixture was stirred at 150 °C (oil bath) under an air atmosphere for the indicated times shown in Schemes 2 and 3 (monitored by thin-layer chromatography). Then, the mixture was cooled to rt, diluted with DCM (2 mL), washed with water (2 × 2 mL). The organic phase was concentrated, and the residue was purified directly by the silica gel flash chromatography (hexane/EtOAc) to afford compound 3. Analytical Data for Typical CompoundsCompound 3a White solid, 66.3 mg, 96% (using 50 mol% of TfOH); purified by a silica gel flash chromatography (hexane/EtOAc, 97:3). 1H NMR (400 MHz, CDCl3): δ = 8.24 (d, J = 7.7 Hz, 2 H), 7.68 (s, 1 H), 7.56–7.38 (m, 14 H), 7.32–7.21 (m, 5 H), 7.19–7.13 (m, 2 H), 7.10 (ddd, J = 8.4, 7.1, 1.4 Hz, 2 H), 6.72 (d, J = 7.7 Hz, 2 H), 3.26 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 166.7, 138.1, 136.6, 130.8, 130.4, 128.6, 128.6, 128.4, 127.4, 127.2, 127.1, 126.8, 126.5, 126.0, 125.6, 125.1, 122.9, 122.7, 118.9, 118.4, 112.9, 51.3, 39.9. HRMS (ESI): m/z [M + Na]+ calcd for C47H34N2NaO4 +: 713.2411; found: 713.2419. Compound 3b White solid, 19.9 mg, 28%; purified by a silica gel flash chromatography (hexane/EtOAc, 97:3). 1H NMR (400 MHz, CDCl3): δ = 8.21 (d, J = 7.6 Hz, 2 H), 7.63 (s, 1 H), 7.46 (ddd, J = 24.7, 10.3, 6.2 Hz, 14 H), 7.30–7.21 (m, 2 H), 7.13–7.02 (m, 6 H), 6.72 (d, J = 7.7 Hz, 2 H), 3.27 (s, 6 H), 2.32 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 166.7, 136.7, 135.0, 130.8, 130.4, 129.3, 128.5, 128.4, 127.4, 127.2, 127.1, 126.8, 126.6, 125.9, 125.5, 125.3, 122.9, 122.7, 118.9, 118.4, 112.8, 51.3, 39.5, 21.0. HRMS (ESI): m/z [M + Na]+ calcd for C48H36N2NaO4 +: 727.2567; found: 727.2560. Compound 3c Pale yellow solid, 40.6 mg, 56%; purified by a silica gel flash chromatography (hexane/EtOAc, 17:3). 1H NMR (400 MHz, CDCl3): δ = 8.19 (d, J = 7.6 Hz, 2 H), 7.58 (s, 1 H), 7.52–7.37 (m, 14 H), 7.26–7.22 (m, 2 H), 7.13–7.04 (m, 4 H), 6.85–6.79 (m, 2 H), 6.72 (d, J = 7.7 Hz, 2 H), 3.78 (s, 3 H), 3.28 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 166.7, 158.6, 136.7, 130.7, 130.4, 130.1, 129.8, 128.4, 127.4, 127.2, 127.1, 126.8, 126.5, 125.9, 125.5, 125.4, 122.9, 122.6, 118.9, 118.4, 114.0, 112.9, 55.3, 51.3, 39.2. HRMS (ESI): m/z [M + Na]+ calcd for C48H36N2NaO5 +: 743.2516; found: 743.2524. Compound 3d White solid, 49.2 mg, 68%; purified by a silica gel flash chromatography (hexane/EtOAc, 97:3). 1H NMR (400 MHz, CDCl3): δ = 8.24 (d, J = 7.7 Hz, 2 H), 7.65 (s, 1 H), 7.50–7.39 (m, 14 H), 7.29–7.21 (m, 4 H), 7.15–7.06 (m, 4 H), 6.75 (d, J = 7.7 Hz, 2 H), 3.30 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 166.7, 136.8, 136.5, 132.9, 130.7, 130.4, 130.0, 128.6, 128.4, 127.33, 127.26, 127.2, 126.8, 126.5, 126.1, 125.8, 124.5, 122.9, 122.4, 118.9, 118.3, 113.2, 51.4, 39.3. HRMS (ESI): m/z [M + Na]+ calcd for C47H33ClN2NaO4 +: 747.2021; found: 747.2018. Compound 3e White solid, 15.8 mg, 21%; purified by a silica gel flash chromatography (hexane/EtOAc, 17:3). 1H NMR (400 MHz, CDCl3): δ = 8.27 (d, J = 7.7 Hz, 2 H), 7.68 (s, 1 H), 7.53–7.39 (m, 16 H), 7.29–7.21 (m, 2 H), 7.19–7.07 (m, 2 H), 7.00 (d, J = 7.7 Hz, 1 H), 6.75 (d, J = 7.6 Hz, 2 H), 3.34 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 166.8, 140.5, 136.5, 131.7, 130.8, 130.4, 130.3, 130.2, 128.4, 127.4, 127.3, 127.2, 126.8, 126.5, 126.1, 125.8, 124.2, 123.0, 122.6, 122.4, 119.0, 118.4, 113.2, 51.4, 39.5. HRMS (ESI): m/z [M + Na]+ calcd for C47H33BrN2NaO4 +: 791.1516; found: 791.1525. Compound 3h Yellow solid, 33.8 mg, 47%; purified by a silica gel flash chromatography (hexane/EtOAc, 17:3). 1H NMR (400 MHz, CDCl3): δ = 8.20 (d, J = 7.6 Hz, 2 H), 7.64 (s, 1 H), 7.51–7.35 (m, 4 H), 7.33–7.20 (m, 13 H), 7.18–7.05 (m, 4 H), 6.71 (d, J = 7.7 Hz, 2 H), 3.28 (s, 6 H), 2.47 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 166.7, 136.7, 133.4, 130.5, 130.2, 129.2, 128.7, 128.6, 127.3, 127.1, 127.0, 126.7, 125.9, 125.6, 124.9, 122.9, 122.6, 119.0, 118.5, 112.8, 51.3, 40.0, 21.4. HRMS (ESI): m/z [M + Na]+ calcd for C49H38N2NaO4 +: 741.2724; found: 741.2733. Compound 3i Pale yellow solid, 34.9 mg, 46%; purified by a silica gel flash chromatography (hexane/EtOAc, 17:3). 1H NMR (400 MHz, CDCl3): δ = 8.19 (d, J = 7.6 Hz, 2 H), 7.64 (s, 1 H), 7.49–7.39 (m, 6 H), 7.36–7.20 (m, 7 H), 7.17–7.09 (m, 4 H), 7.05–6.97 (m, 4 H), 6.70 (d, J = 7.7 Hz, 2 H), 3.91 (s, 6 H), 3.28 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 166.7, 158.8, 138.2, 131.8, 131.5, 128.6, 128.6, 127.3, 127.08, 127.06, 126.74, 126.65, 125.9, 125.8, 124.9, 122.9, 122.6, 118.6, 113.9, 112.8, 55.2, 51.4, 39.9. HRMS (ESI): m/z [M + Na]+ calcd for C49H38N2NaO6 +: 773.2622; found: 773.2625. Compound 3j White solid, 44.9 mg, 55%; purified by a silica gel flash chromatography (hexane/EtOAc, 9:1). 1H NMR (400 MHz, CDCl3): δ = 8.21 (d, J = 7.6 Hz, 2 H), 7.65 (s, 1 H), 7.56 (d, J = 8.2 Hz, 2 H), 7.48–7.43 (m, 2 H), 7.33–7.22 (m, 5 H), 7.18–7.14 (m, 4 H), 6.72 (d, J = 7.6 Hz, 2 H), 6.66 (d, J = 2.1 Hz, 2 H), 6.59–6.51 (m, 4 H), 3.83–3.80 (m, 12 H), 3.31 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 166.7, 160.74, 160.69, 138.5, 138.0, 128.7, 128.6, 128.4, 127.3, 127.2, 127.1, 126.7, 126.3, 126.0, 125.5, 124.9, 123.2, 122.6, 118.6, 118.3, 112.9, 108.6, 108.3, 99.8, 55.4, 51.4, 39.8. HRMS (ESI): m/z [M + Na]+ calcd for C51H42N2NaO8 +: 833.2833; found: 833.2843. Compound 3k Yellow solid, 36.4 mg, 48%; purified by a silica gel flash chromatography (hexane/EtOAc, 17:3). 1H NMR (400 MHz, CDCl3): δ = 8.18 (d, J = 7.7 Hz, 2 H), 7.67 (s, 1 H), 7.52–7.33 (m, 11 H), 7.33–7.23 (m, 6 H), 7.19–7.10 (m, 4 H), 6.73 (d, J = 7.7 Hz, 2 H), 3.28 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 166.4, 137.9, 135.2, 133.2, 132.2, 131.9, 128.7, 128.6, 127.4, 127.3, 127.2, 126.9, 126.3, 126.2, 125.8, 125.3, 122.8, 122.5, 118.3, 117.4, 113.1, 51.4, 39.8. HRMS (ESI): m/z [M + Na]+ calcd for C47H32Cl2N2NaO4 +: 781.1631; found: 781.1622. Compound 3l White solid, 37.4 mg, 44%; purified by a silica gel flash chromatography (hexane/EtOAc, 17:3). 1H NMR (400 MHz, CDCl3): δ = 8.34 (d, J = 7.9 Hz, 2 H), 7.69 (s, 1 H), 7.52–7.35 (m, 15 H), 7.34–7.27 (m, 2 H), 7.18 (d, J = 7.9 Hz, 2 H), 7.16–7.11 (m, 2 H), 6.92 (t, J = 8.1 Hz, 2 H), 3.27 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 166.5, 137.6, 136.2, 130.6, 130.3, 129.9, 128.7, 128.6, 128.5, 128.2, 127.7, 127.4, 127.3, 126.5, 125.0, 124.9, 123.9, 122.4, 121.8, 119.7, 119.1, 111.4, 51.4, 39.7. HRMS (ESI): m/z [M + Na]+ calcd for C47H32Br2N2NaO4 +: 869.0621; found: 869.0630. Compound 3m Pale yellow solid, 22.3 mg, 26%; purified by a silica gel flash chromatography (hexane/EtOAc, 4:1). 1H NMR (400 MHz, CDCl3): δ = 7.38–7.35 (m, 8 H), 7.29–7.25 (m, 1 H), 7.17 (s, 1 H), 7.15 (d, J = 8.7 Hz, 2 H), 6.88–6.81 (m, 2 H), 6.61 (s, 2 H), 6.39 (s, 2 H), 4.02 (d, J = 2.8 Hz, 2 H), 3.92 (q, J = 7.0, 6.6 Hz, 2 H), 3.81 (s, 6 H), 3.79 (s, 3 H), 3.29 (s, 6 H), 3.26 (s, 6 H), 2.96–2.86 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 166.6, 158.4, 147.3, 147.1, 136.7, 133.7, 131.3, 130.5, 129.5, 128.1, 126.6, 126.0, 124.5, 121.4, 120.7, 114.0, 113.8, 110.6, 107.9, 55.9, 55.3, 55.0, 51.0, 42.1, 39.7, 29.1. HRMS (ESI): m/z [M + Na]+ calcd for C52H48N2NaO9 +: 867.3252; found: 867.3260. Zusatzmaterial Zusatzmaterial Supporting Information