Subscribe to RSS

DOI: 10.1055/a-2451-4726
Circular Chemistry: An Enabler of Circular Economy To Achieve the Zero-Waste Goal

Dedication
This article is dedicated to Dr. Praveen Kumar Tandon, Professor (Former Head), Department of Chemistry, University of Allahabad, on his 67th Birth Anniversary as a token of respect for his remarkable contribution to the field of catalysis and chemical kinetics.
Abstract
The main aims of zero-waste goals are the promotion of sustainable production and consumption through the societal move toward circular approaches. The chemical industry includes a variety of processes to produce various useful consumables, but many of these processes have serious negative environmental, health, and safety impacts at every level of their design, production, processing, and uses. Circularity is at the core of eco-design and the production technology in which waste is repurposed and their environmental impacts are reduced via the 3Rs concepts: reduce, reuse, and recycle. The integration of circular approaches with chemistry makes it a circular chemistry (CC). This article provides a brief literature review on CC and why it is important to tackle the various sustainability-related issues. Here we conduct a structured opinion as well as evidence-based review to explore the role of CC to make it more sustainable. Fundamental aspects of CC and its role in the circular economy have been discussed, and it is concluded that the design of clean chemical processes, recovery, and reuse of wastes, and reintroducing recovered materials back to the industrial production chain is possible and scalable. This article aligns with 7 UN’s Sustainable Development Goals, that is, 3, 6, 9, 12, 13, 14, and 15.
Keywords
Circular chemistry - Zero-waste goal - Circular economy - Sustainability - Circularity - RecyclePublication History
Received: 31 August 2024
Accepted after revision: 23 October 2024
Article published online:
22 November 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
Santosh Bahadur Singh. Circular Chemistry: An Enabler of Circular Economy To Achieve the Zero-Waste Goal. Sustainability & Circularity NOW 2024; 01: a24514726.
DOI: 10.1055/a-2451-4726
-
References
- 1
Anastas P,
Nolasco M,
Kerton F,
Kirchhoff M,
Licence P,
Pradeep T,
Subramaniam B,
Moores A.
The Power of the United Nations Sustainable Development Goals in Sustainable Chemistry
and Engineering Research. ACS Sustainable Chem. Eng. 2021; 9: 8015-8017
MissingFormLabel
- 2
Stafford-Smith M,
Griggs D,
Gaffney O,
Ullah F,
Reyers B,
Kanie N,
Stigson B,
Shrivastava P,
Leach M,
O’Connell D.
Integration: the key to implementing the Sustainable Development Goals. Sustainable
Sci. 2017; 12: 911-919
MissingFormLabel
- 3
Yletyinen J,
Kuhmonen I,
Stahlmann-Brown P.
Resilient and sustainable natural resource production: how are farmers and foresters
coping?. Ecol. Soc. 2024; 29: 6
MissingFormLabel
- 4
Eid MA. H,
Al-Abdallah G.
Sustainable development through biomimicry: Enhancing circular economy practices for
environmental sustainability. Sustainable Dev. 2024;
MissingFormLabel
- 5
Singh PP,
Singh A.
Solid waste management through the concept of zero waste. In Emerg. Trends to Approaching
Zero Waste Environ. Soc. Perspect.. 2022. pp 293-318
MissingFormLabel
- 6
Awasthi AK,
Cheela VR. S,
D’Adamo I,
Iacovidou E,
Islam MR,
Johnson M,
Miller TR,
Parajuly K,
Parchomenko A,
Radhakrishan L,
Zhao M,
Zhang C,
Li J.
Zero waste approach towards a sustainable waste management. Resour. Environ. Sustainable
2021; 3: 100014
MissingFormLabel
- 7
Shukla S,
Khan R.
Sustainable waste management approach: A paradigm shift towards zero waste into landfills.
Adv. Org. Waste Manag. Sustainable Pract. Approaches 2022; 381-395
MissingFormLabel
- 8
Cucciniello R,
Cespi D.
Recycling within the chemical industry: The circular economy era. Recycling 2018;
3: 22
MissingFormLabel
- 9
Kümmerer K,
Clark JH,
Zuin VG.
Rethinking chemistry for a circular economy. Science 2020; 367: 369-370
MissingFormLabel
- 10 Global Waste Management Outlook 2024 | UNEP – UN Environment Programme. n.d. https://www.unep.org/resources/global-waste-management-outlook-2024 (accessed June 11, 2024)
MissingFormLabel
- 11
Priya AK,
Muruganandam M,
Ali SS,
Kornaros M.
Clean-Up of Heavy Metals from Contaminated Soil by Phytoremediation: A Multidisciplinary
and Eco-Friendly Approach. Toxics 2023; 11: 422
MissingFormLabel
- 12
Mitra S,
Chakraborty AJ,
Tareq AM,
Bin Emran T,
Nainu F,
Khusro A,
Idris AM,
Khandaker MU,
Osman H,
Alhumaydhi FA,
Simal-Gandara J.
Impact of heavy metals on the environment and human health: Novel therapeutic insights
to counter the toxicity. J. King Saud Univ., Sci. 2022; 34: 101865
MissingFormLabel
- 13
He C,
Cheng J,
Zhang X,
Douthwaite M,
Pattisson S,
Hao Z.
Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review
Based on Pollutant Sorts and Sources. Chem. Rev. 2019; 119: 4471-4568
MissingFormLabel
- 14
Niu Z,
Kong S,
Zheng H,
Yan Q,
Liu J,
Feng Y,
Wu J,
Zheng S,
Zeng X,
Yao L,
Zhang Y,
Fan Z,
Cheng Y,
Liu X,
Wu F,
Qin S,
Yan Y,
Ding F,
Liu W,
Zhu K,
Liu D,
Qi S.
Temperature dependence of source profiles for volatile organic compounds from typical
volatile emission sources. Sci. Total Environ. 2021; 751: 141741
MissingFormLabel
- 15
Martínez JH,
Romero S,
Ramasco JJ,
Estrada E.
The world-wide waste web. Nat. Commun. 2022; 131 (13) 1615
MissingFormLabel
- 16
Liu J,
Tan Y,
Song E,
Song Y.
A Critical Review of Polychlorinated Biphenyls Metabolism, Metabolites, and Their
Correlation with Oxidative Stress. Chem. Res. Toxicol. 2020; 33: 2022-2042
MissingFormLabel
- 17
Ncube A,
Mtetwa S,
Bukhari M,
Fiorentino G,
Passaro R.
Circular Economy and Green Chemistry: The Need for Radical Innovative Approaches in
the Design for New Products. Energies 2023; 16: 1752
MissingFormLabel
- 18
Wang Z,
Hellweg S.
First Steps Toward Sustainable Circular Uses of Chemicals: Advancing the Assessment
and Management Paradigm. ACS Sustainable Chem. Eng. 2021; 9: 6939-6951
MissingFormLabel
- 19
Aurisano N,
Weber R,
Fantke P.
Enabling a circular economy for chemicals in plastics. Curr. Opin. Green Sustainable
Chem. 2021; 31: 100513
MissingFormLabel
- 20
Clark JH,
Farmer TJ,
Herrero-Davila L,
Sherwood J.
Circular economy design considerations for research and process development in the
chemical sciences. Green Chem. 2016; 18: 3914-3934
MissingFormLabel
- 21
D’Amato D,
Korhonen J.
Integrating the green economy, circular economy and bioeconomy in a strategic sustainability
framework. Ecol. Econ. 2021; 188 107143
MissingFormLabel
- 22
Johansen MR,
Christensen TB,
Ramos TM,
Syberg K.
A review of the plastic value chain from a circular economy perspective. J. Environ.
Manage. 2022; 302: 113975
MissingFormLabel
- 23
Singh SB.
Emerging Sustainable Nanomaterials and their Applications in Catalysis and Corrosion
Control. Curr. Nanosci. 2020; 17: 540-553
MissingFormLabel
- 24
Nordahl SL,
Scown CD.
Recommendations for life-cycle assessment of recyclable plastics in a circular economy.
Chem. Sci. 2024; 15: 9397-9407
MissingFormLabel
- 25
Purohit VB,
Pięta M,
Pietrasik J,
Plummer CM.
Towards sustainability and a circular Economy: ROMP for the goal of fully degradable
and chemically recyclable polymers. Eur. Polym. J. 2024; 208: 112847
MissingFormLabel
- 26
Nguyen PM,
Berrard C,
Daoud N,
Saillard P,
Peyroux J,
Vitrac O.
Assessment of chemical risks and circular economy implications of recycled PET in
food packaging with functional barriers. Resour. Environ. Sustainable 2024; 17: 100163
MissingFormLabel
- 27
Slootweg JC.
Sustainable chemistry: Green, circular, and safe-by-design. One Earth 2024; 7: 754-758
MissingFormLabel
- 28
Zilia F,
Andreottola FG,
Orsi L,
Parolini M,
Bacenetti J.
Trash or treasure? A circular business model of recycling plasmix. Circ. Econ. 2024;
3: 100089
MissingFormLabel
- 29
Guarieiro LL. N,
Rezende MJ. C,
Barbosa WT,
da Rocha GO,
Pereira PA. P,
Fernandes DR,
Lopes WA,
Mota CJ. A,
de Andrade JB.
Reaching Circular Economy through Circular Chemistry: The Basis for Sustainable Development.
J. Braz. Chem. Soc. 2022; 33: 1353-1374
MissingFormLabel
- 30
Mohan SV,
Katakojwala R.
The circular chemistry conceptual framework: A way forward to sustainability in industry
4.0. Curr. Opin. Green Sustainable Chem. 2021; 28: 100434
MissingFormLabel
- 31
Kumar A,
Gao C.
Homogeneous (De)hydrogenative Catalysis for Circular Chemistry – Using Waste as a
Resource. ChemCatChem 2021; 13: 1105-1134
MissingFormLabel
- 32
Keijer T,
Bakker V,
Slootweg JC.
Circular chemistry to enable a circular economy. Nat. Chem. 2019; 11: 190-195
MissingFormLabel
- 33
Zuin VG,
Kümmerer K.
Repurposing chemical waste: Sustainable chemistry for circularity beyond artificial
intelligence. Cell 2022; 185: 2655-2656
MissingFormLabel
- 34
Hoornweg D,
Bhada-Tata P,
Kennedy C.
Environment: Waste production must peak this century. Nature 2013; 502: 615-617
MissingFormLabel
- 35
Wilson DC,
Velis CA.
Waste management—still a global challenge in the 21st century: an evidence-based call
for action. Waste Manage. Res. 2015; 33: 1049-1051
MissingFormLabel
- 36
Chen DM. C,
Bodirsky BL,
Krueger T,
Mishra A,
Popp A.
The world’s growing municipal solid waste: trends and impacts. Environ. Res. Lett.
2020; 15: 074021
MissingFormLabel
- 37
Walters R,
Fuentes Loureiro MA.
Waste crime and the global transference of hazardous substances: a southern green
perspective. Crit. Criminol. 2020; 28: 463-480
MissingFormLabel
- 38
Akpan VE,
Olukanni DO.
Hazardous waste management: an African overview. Recycling 2020; 5: 15
MissingFormLabel
- 39
Beghetto V,
Gatto V,
Samiolo R,
Scolaro C,
Brahimi S,
Facchin M,
Visco A.
Plastics today: Key challenges and EU strategies towards carbon neutrality: A review.
Environ. Pollut. 2023; 334: 122102
MissingFormLabel
- 40
Corona B,
Shen L,
Reike D,
Rosales Carreón J,
Worrell E.
Towards sustainable development through the circular economy—A review and critical
assessment on current circularity metrics. Resour. Conserv. Recycl. 2019; 151: 104498
MissingFormLabel
- 41
Nikolaou IE,
Tsagarakis KP.
An introduction to circular economy and sustainability: Some existing lessons and
future directions. Sustainable Prod. Consumption 2021; 28: 600-609
MissingFormLabel
- 42
Singh J,
Saharan V,
Kumar S,
Gulati P,
Kapoor RK.
Laccase grafted membranes for advanced water filtration systems: a green approach
to water purification technology. Crit. Rev. Biotechnol. 2018; 38: 883-901
MissingFormLabel
- 43
Niero M,
Kalbar PP.
Coupling material circularity indicators and life cycle based indicators: A proposal
to advance the assessment of circular economy strategies at the product level. Resour.
Conserv. Recycl. 2019; 140: 305-312
MissingFormLabel
- 44
Mukherjee PK,
Das B,
Bhardwaj PK,
Tampha S,
Singh HK,
Chanu LD,
Sharma N,
Devi SI.
Socio-economic sustainability with circular economy—An alternative approach. Sci.
Total Environ. 2023; 904: 166630
MissingFormLabel
- 45
Dev NK,
Shankar R,
Qaiser FH.
Industry 4.0 and circular economy: Operational excellence for sustainable reverse
supply chain performance. Resour. Conserv. Recycl. 2020; 153: 104583
MissingFormLabel
- 46
Andrews D.
The circular economy, design thinking and education for sustainability. Local Econ.
2015; 30: 305-315
MissingFormLabel
- 47
Smol M.
Circular economy approach in the water and wastewater sector. In Circ. Econ. Sustain.
Vol. 2. Environ. Eng.. 2022. pp 1-19
MissingFormLabel
- 48
Fogarassy C,
Finger D.
Theoretical and Practical Approaches of Circular Economy for Business Models and Technological
Solutions. Resources 2020; 9: 76
MissingFormLabel
- 49
Stucki T,
Woerter M,
Loumeau N.
Clearing the fog: How circular economy transition can be measured at the company level.
J. Environ. Manage. 2023; 326: 116749
MissingFormLabel
- 50
Rocchi L,
Paolotti L,
Cortina C,
Fagioli FF,
Boggia A.
Measuring circularity: an application of modified Material Circularity Indicator to
agricultural systems. Agric. Food Econ. 2021; 9: 9
MissingFormLabel
- 51
Voukkali I,
Papamichael I,
Loizia P,
Lekkas DF,
Rodríguez-Espinosa T,
Navarro-Pedreño J,
Zorpas AA.
Waste metrics in the framework of circular economy. Waste Manage. Res. 2023; 41: 1741-1753
MissingFormLabel
- 52
Harris S,
Martin M,
Diener D.
Circularity for circularity’s sake? Scoping review of assessment methods for environmental
performance in the circular economy. Sustainable Prod. Consum. 2021; 26: 172-186
MissingFormLabel
- 53
Moraga G,
Huysveld S,
Mathieux F,
Blengini GA,
Alaerts L,
Van Acker K,
de Meester S,
Dewulf J.
Circular economy indicators: What do they measure?. Resour. Conserv. Recycl. 2019;
146: 452
MissingFormLabel
- 54
Tandon PK,
Kumar S,
Srivastava M,
Khanam SZ,
Singh SB.
Oxidation of hydrates of cyclic ketones by alkaline hexacyanoferrate(III). J. Mol.
Catal. A: Chem. 2007; 261: 282-287
MissingFormLabel
- 55
Tandon PK,
Mehrotra A,
Srivastava M,
Dhusia M,
Singh SB.
Ruthenium(III) catalysis in the reaction of hexacyanoferrate(III) and iodide ions
in perchloric acid medium. Transition Met. Chem. 2007; 32: 74-80
MissingFormLabel
- 56
Tandon PK,
Khanam SZ,
Singh SB.
Oxidation of vicinal diols by cerium(IV) in aqueous acidic media catalyzed by rhodium(III).
Open Catal. J. 2012; 5: 1
MissingFormLabel
- 57
Tandon PK,
Srivastava M,
Singh SB,
Singh S.
Liquid phase and microwave assisted oxidation of some hydrocarbons, aromatic aldehydes,
and phenols by cerium(IV) catalyzed by iridium(III) in acidic medium. Synth. Commun.
2008; 38: 2125-2137
MissingFormLabel
- 58
Singh SB.
Enzyme catalysis and its role in food processing industries. In Enzym. Food Technol.
Improv. Innov.. Springer Singapore; 2018. pp 143-165
MissingFormLabel
- 59
Singh SB,
Hussain CM.
Functionalized nanographene for catalysis. In Handb. Funct. Nanomater. Ind. Appl..
Elsevier; 2020. pp 111-129
MissingFormLabel
- 60
Tandon PK,
Singh SB.
Hexacyanoferrate(III) oxidation of arsenic and its subsequent removal from the spent
reaction mixture. J. Hazard. Mater. 2011; 185: 930-937
MissingFormLabel
- 61
Zybert M.
Applied Catalysis in Chemical Industry: Synthesis, Catalyst Design, and Evaluation.
Catalysts 2023; 13: 607
MissingFormLabel
- 62 Understanding the power of catalysis | CAS. n.d. https://www.cas.org/resources/cas-insights/understanding-power-catalysis (accessed September 23, 2024)
MissingFormLabel
- 63
Miller Jr GT,
Spoolman SE.
Environmental Science. 13 th ed. Yolanda Cossio, USA: 2010. https://www.google.com/search?q=Environmental+Science%2C+13e+G.+Tyler+Miller%2C+Jr.+and+Scott+E.+Spoolman&oq=Environmental+Science%2C+13e+G.+Tyler+Miller%2C+Jr.+and+Scott+E.+Spoolman&aqs=chrome..69i57.475j0j9&sourceid=chrome&ie=UTF-8 accessedNovember262023
MissingFormLabel
- 64 OECD Environmental Outlook to 2030. 2008
MissingFormLabel
- 65 Global Chemicals Outlook | UNEP – UN Environment Programme. n.d. https://www.unep.org/explore-topics/chemicals-waste/what-we-do/policy-and-governance/global-chemicals-outlook (accessed December 27, 2023)
MissingFormLabel
- 66 The public health impact of chemicals: knowns and unknowns. n.d. https://www.who.int/publications/i/item/WHO-FWC-PHE-EPE-16-01 (accessed December 27, 2023)
MissingFormLabel
- 67 Transitioning To A Circular Economy Through Chemical and Waste Management | United
Nations Development Programme. n.d. https://www.undp.org/publications/transitioning-circular-economy-through-chemical-and-waste-management (accessed December 22, 2023)
MissingFormLabel
- 68
Webster R,
Hardy MC.
Finding the central science. Nat. Chem. 2019; 11: 857-862
MissingFormLabel
- 69
Matlin SA,
Krief A,
Hopf H,
Mehta G.
Re-imagining Priorities for Chemistry: A Central Science for “Freedom from Fear and
Want,”. Angew. Chem., Int. Ed. 2021; 60: 25610-25623
MissingFormLabel
- 70
Anastas P,
Eghbali N.
Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010; 39: 301-312
MissingFormLabel
- 71
Anastas PT,
Zimmerman JB.
Peer Reviewed: Design Through the 12 Principles of Green Engineering. Environ. Sci.
Technol. 2003; 37: 94A-101A
MissingFormLabel
- 72
Mutlu H,
Barner L.
Getting the Terms Right: Green, Sustainable, or Circular Chemistry?. Macromol. Chem.
Phys. 2022; 223 2200111
MissingFormLabel
- 73
Krasnodębski M.
Reinventing the wheel: A critical look at one-world and circular chemistries. Stud.
Hist. Philos. Sci. 2022; 96: 112-120
MissingFormLabel
- 74
Anastas PT,
Zimmerman JB.
Peer Reviewed: Design Through the 12 Principles of Green Engineering. Environ. Sci.
Technol. 2003; 37: 94A-101A
MissingFormLabel
- 75
Elhami V,
Antunes EC,
Temmink H,
Schuur B.
Recovery Techniques Enabling Circular Chemistry from Wastewater. Molecules 2022; 27:
1389
MissingFormLabel
- 76
Aurisano N,
Weber R,
Fantke P.
Enabling a circular economy for chemicals in plastics. Curr. Opin. Green Sustainable
Chem. 2021; 31 100513
MissingFormLabel
- 77
Slootweg JC.
Using waste as resource to realize a circular economy: Circular use of C, N and P.
Curr. Opin. Green Sustainable Chem. 2020; 23: 61-66
MissingFormLabel
- 78 Chemicals Global Market Size, Trends And Future Forecast 2032. n.d. https://www.thebusinessresearchcompany.com/report/chemicals-global-market-report (accessed December 22, 2023)
MissingFormLabel
- 79 Circular Economy: Role of Chemistry and Chemical Industry | United Nations Development
Programme. n.d. https://www.undp.org/vietnam/speeches/circular-economy-role-chemistry-and-chemical-industry (accessed December 23, 2023)
MissingFormLabel
- 80 $5.7 trillion contribution – Chemical Industry Journal. n.d. https://www.chemicalindustryjournal.co.uk/5-7-trillion-contribution (accessed December 23, 2023)
MissingFormLabel
- 81
de Andrade Monteiro AG,
Scur G,
Mattos CA,
de Oliveira MC.
Circular economy in the Brazilian chemical industry: A proposal for a circularity
index. Clean. Eng. Technol. 2024; 19: 100730
MissingFormLabel
- 82
Wang K,
Horlyck J,
An N,
Voutchkova-Kostal A.
Homogeneous vs. heterogeneous catalysts for acceptorless dehydrogenation of biomass-derived
glycerol and ethanol towards circular chemistry. Green Chem. 2024; 26: 3546-3564
MissingFormLabel
- 83
Lozano P,
García-Verdugo E.
From green to circular chemistry paved by biocatalysis. Green Chem. 2023; 25: 7041-7057
MissingFormLabel
- 84
Wołos A,
Koszelewski D,
Roszak R,
Szymkuć S,
Moskal M,
Ostaszewski R,
Herrera BT,
Maier JM,
Brezicki G,
Samuel J,
Lummiss JA. M,
McQuade DT,
Rogers L,
Grzybowski BA.
Computer-designed repurposing of chemical wastes into drugs. Nature 2022; 604: 668-676
MissingFormLabel
- 85
Osman AI,
Mehta N,
Elgarahy AM,
Al-Hinai A,
Al-Muhtaseb AH,
Rooney DW.
Conversion of biomass to biofuels and life cycle assessment: a review. Environ. Chem.
Lett. 2021; 19: 4075-4118
MissingFormLabel
- 86
Ferronato N,
Maalouf A,
Mertenat A,
Saini A,
Khanal A,
Copertaro B,
Yeo D,
Jalalipour H,
Raldúa Veuthey J,
Ulloa-Murillo LM,
Thottathil MS,
bin Shuaib NA,
Caplin R,
Mohandas VJ.
A review of plastic waste circular actions in seven developing countries to achieve
sustainable development goals. Waste Manage. Res. 2023; 42: 436-458
MissingFormLabel
- 87
Duque-Acevedo M,
Ulloa-Murillo LM,
Belmonte-Ureña LJ,
Camacho-Ferre F,
Mercl F,
Tlustoš P.
Sustainable and circular agro-environmental practices: A review of the management
of agricultural waste biomass in Spain and the Czech Republic. Waste Manage. Res.
2023; 41: 955-969
MissingFormLabel
- 88
D’Adamo I,
Ferella F,
Gastaldi M,
Ippolito NM,
Rosa P.
Circular solar: Evaluating the profitability of a photovoltaic panel recycling plant.
Waste Manage. Res. 2023; 41: 1144-1154
MissingFormLabel