Subscribe to RSS
DOI: 10.1055/a-2438-0479
Vom Vibrationstrauma zur pharyngealen Muskelinstabilität – Ein sich selbst unterhaltender pathophysiologischer Prozess (Circulus vitiosus) bei obstruktiver Schlafapnoe (OSA)
From vibration trauma to pharyngeal muscle instability: A self-sustaining pathophysiological process (circulus vitiosus) in obstructive sleep apnea
Zusammenfassung
Die Pharynxstabilität wird sowohl durch anatomische als auch nicht-anatomische Faktoren gewährleistet. Neben der anatomischen Weite sind auch funktionelle Faktoren für den Obstruktionsgrad des oberen Atemwegs bedeutsam. Die Funktionsfähigkeit der pharyngealen Muskeln ist von einer ungestörten Sensomotorik abhängig. Bei Patienten mit Rhonchopathie bzw. obstruktiver Schlafapnoe (OSA) verändern sich Sensomotorik und Muskelmorphologie in zunehmendem Ausmaß. Es ist zu mutmaßen, dass langjähriges Schnarchen zu einer vibrationsbedingten sensomotorischen Neuropathie mit Verlust der Funktion und Struktur der pharyngealen Muskulatur führt. Pharyngeale Mechanorezeptoren verlieren ihre Empfindlichkeit und die Informationen können aufgrund eines neuronalen Schadens nicht mehr adäquat motorisch umgesetzt werden. Es stellt sich die Frage, nach welchem Zeitraum es zu einem irreversiblen vibrationsbedingten Rezeptorschaden durch Schnarchen kommt.
Abstract
Pharyngeal stability is ensured by both anatomical and non-anatomical factors. In addition to the anatomical width, functional factors are also significant in determining the degree of obstruction of the upper airway. The functionality of the pharyngeal muscles depends on an undisturbed sensorimotor system. In patients with rhonchopathy or obstructive sleep apnea (OSA), sensorimotor function and muscle morphology change progressively. It is hypothesised that long-term snoring leads to vibration-induced sensorimotor neuropathy, resulting in the loss of function and structure of the pharyngeal muscles. Pharyngeal mechanoreceptors lose their sensitivity, and due to neural damage, information can no longer be adequately translated into motor responses. This raises the question of the timeframe within which irreversible vibration-induced receptor damage occurs due to snoring.
Schlüsselwörter
Schnarchen - obstruktive Schlafapnoe - pharyngeale Mechanorezeptoren - Vibrationsschaden - SensomotorikKeywords
snoring - obstructive sleep apnea - pharyngeal mechanoreceptors - vibration damage - sensorimotor functionPublication History
Received: 05 September 2024
Accepted after revision: 08 October 2024
Article published online:
04 December 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Stuck BA, Braumann B, Heiser C. et al. S3-Leitlinie (Langfassung). Diagnostik und Therapie des Schnarchens des Erwachsenen. AWMF-Register-Nr. 017/068.
- 2 Heiser C, Eckert D. Pathophysiologie der obstruktiven Schlafapnoe. HNO 2019; 67: 654-662
- 3 Friberg D. Heavy Snorer’s Disease: a Progressive Local Neuropathy. Acta Otolaryngol 1999; 19: 925-933
- 4 Lindman R, Stal PS. Abnormal palatopharyngeal muscle morphology in sleep-disordered breathing. J Neurol Sci 2002; 195: 11-23
- 5 Friberg D, Ansved T, Borg K. et al. Histological Indications of a Progressive Snorers Disease in an Upper Airway Muscle. Am J Respir Crit Care Med 1998; 157: 586-593
- 6 Shah F, Stal P. Myopathy of the upper airway in snoring and obstructive sleep apnea. Laryngoscope Investigative Otolaryngology 2022; 7: 636-645
- 7 Kirkness JP, Schwartz AR, Schneider H. et al. Contribution of male sex, and obesity to mechanical instability of the upper airway during sleep. J Appl Physiol 2008; 104: 1618-1624
- 8 Genta PR, Schorr F, Eckert DJ. et al. Upper airway collapsibility is associated with obesity and hyoid position. Sleep 2014; 37: 1673-1678
- 9 Genta PR, Schorr F, Edwards BA. et al. Discriminating the severity of pharyngeal collapsibility in men using anthropometric and polysomnographic indices. J Clin Sleep Med 2020; 16: 1531-1537
- 10 D’Angelo GF, Mello AA, Schorr F. et al. Muscle and visceral fat infiltration: A potential mechanism to explain the worsening of obstructive sleep apnea with age. Sleep Med 2023; 104: 42-48
- 11 Nilsson T, Wahlström J, Burström L. Hand-arm vibration and the risk of vascular and neurological diseases – A systematic review and meta-analysis. PLoS One 2017; 12: e0180795
- 12 Shen S, House RA. Hand-arm vibration syndrome. Can Fam Physician 2017; 63: 206-210
- 13 Poole CJ, Bovenzi M, Nilsson T. et al. International consensus criteria for diagnosing and staging hand-arm vibration syndrome. Int Arch Occup Environ Health 2019; 92: 117-127
- 14 Warnecke T, Dziewas R. Neurogene Dysphagien – Diagnostik und Therapie. Verlag W. Kohlhammer; Stuttgart: 2013
- 15 Richter DW. Atemregulation. In: Schmidt RF, Lang F. Physiologie des Menschen mit Pathophysiologie. 30. Auflage. Springer-Verlag; Heidelberg: 2007
- 16 Bhutada AM, Broughton WA, Garand KLF. Obstructive sleep apnea syndrome (OSAS) and swallowing function – a systematic review. Sleep Breath 2020; 24: 791-799
- 17 Stal PS, Johansson B. Abnormal Mitochondria Organization and Oxidative Activity in the Palate Muscles of Long-Term Snorers with Obstructive Sleep Apnea. Respiration 2012; 83: 407-417
- 18 Stal PS, Lindman R. Characterisation of human soft palate muscles with respect to fibre types, myosins and capillary supply. J Anat 2000; 197: 275-290
- 19 Stal PS, Lindman R, Johansson B. Capillary Supply of the Soft Palate Muscles is reduced in Long-Term Habitual Snorers. Respiration 2009; 77: 303-310
- 20 Boyd JH, Petrof BJ, Qutayba H. et al. Upper Airway Muscle Inflammation and Denervation Changes in Obstructive Sleep Apnea. Am J Respir Crit Care Med 2004; 170: 541-546
- 21 Nguyen AT, Jobin V, Payne R. et al. Laryngeal and Velopharyngeal Sensory Impairment in Obstructive Sleep Apnea. Sleep 2005; 28: 585-593
- 22 Patel JA, Ray BJ, Fernandez-Salvador C. et al. Neuromuscular function of the soft palate and uvula in snoring and obstructive sleep apnea: A systematic review. Am J Otolaryngol 2018; 39: 327-337
- 23 McNicholas WT, Coffey M, McDonnell T. et al. Upper airway obstruction during sleep in normal subjects after selective topical oropharyngeal anesthesia. Am Rev Respir Dis 1987; 135: 1316-1319
- 24 Chadwick GA, Crowley P, Fitzgerald MX. et al. Obstructive sleep apnea following topical oropharyngeal anesthesia in loud snorers. Am Rev Respir Dis 1991; 143: 810-813
- 25 Berry RB, Kouchi KG, Bower JL. et al. Effect of upper airway anesthesia on obstructive sleep apnea. Am J Respir Crit Care Med 1995; 151: 1857-1861
- 26 Pae EK, Wu J, Nguyen D. et al. Geniohyoid muscle properties and myosin heavy chain composition are altered after short-term intermittent hypoxic exposure. J Appl Physiol 2005; 98: 889-894
- 27 Kimoff RJ, Hamid Q, Divangahi M. et al. Increased upper airway cytokines and oxidative stress in severe obstructive sleep apnoea. Eur Respir J 2011; 38: 89-97
- 28 Sauleda J, Garcia-Palmer FJ, Tarraga S. et al. Skeletal muscle changes in patients with obstructive sleep apnoea. Respir Med 2003; 97: 804-810
- 29 Bannow LI, Bonaterra GA, Bertoune M. et al. Effect of chronic intermittent hypoxia (CIH) on neuromuscular junctions and mitochondria in slow- and fast-twitch skeletal muscles of mice – the role of iNOS. Skelet Muscle 2022; 12: 6
- 30 Narici MV, Mafulli N. Sarcopenia: characteristics, mechanisms and functional significance. Br Med Bull 2010; 95: 139-159
- 31 Wu R, Delahunt E, Ditroilo M. et al. Effects of age and sex on neuromuscular-mechanical determinants of muscle strength. Age 2016; 38: 57
- 32 Sarkis LM, Jones AC, Ng A. et al. Australasian Sleep Association position statement on consensus and evidence based treatment for primary snoring. Respirology 2023; 28: 110-119