Subscribe to RSS
DOI: 10.1055/a-2427-9313
Amine-Ligated Boryl Radical Enabled Hydrofunctionalization of Styrenes via Halogen-Atom Transfer of Alkyl and Aryl Bromides
This study was partially supported by the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Number JP24K17678 to N.Y.).

Abstract
Herein, we demonstrate an amine-ligated boryl radical mediated halogen-atom transfer (XAT) strategy with alkyl and aryl bromides to construct C(sp 3)–C(sp 3) and C(sp 3)–C(sp 2) bonds, respectively. The first step involves the photocatalytic and decarboxylative generation of amine-ligated boryl radicals from a carboxylic acid containing amine-ligated borane. The resulting amine-ligated boryl radical undergoes XAT with organobromides to generate carbon-centered radicals, which react with styrenes to afford hydrofunctionalized products. Furthermore, this photocatalytic XAT strategy can be applied to synthesize gem-difluorostyrene and 1,1-disubstituted cyclopropane through a radical-polar crossover mechanism.
Key words
halogen-atom transfer - amine-ligated boryl radical - photoredox catalysis - hydrofunctionalization - radical-polar crossover mechanismSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2427-9313.
- Supporting Information
Publication History
Received: 19 August 2024
Accepted after revision: 01 October 2024
Accepted Manuscript online:
01 October 2024
Article published online:
21 October 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
- 1b Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6723
- 1c Negishi E. Angew. Chem. Int. Ed. 2011; 50: 6738
- 1d Seifinoferest B, Tanbakouchian A, Larijani B, Mahdavi M. Asian J. Org. Chem. 2021; 10: 1319
- 1e Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
- 2a Campeau L.-C, Hazari N. Organometallics 2019; 38: 3
- 2b Kambe N, Iwasaki T, Terao J. Chem. Soc. Rev. 2011; 40: 4937
- 3 Juliá F, Constantin T, Leonori D. Chem. Rev. 2022; 122: 2292
- 4a Baguley PA, Walton JC. Angew. Chem. Int. Ed. 1998; 37: 3072
- 4b Srikanth GS. C, Castle SL. Tetrahedron 2005; 61: 10377
- 4c Giese B. Angew. Chem. Int. Ed. 1983; 22: 753
- 4d Chatgilialoglu C, Ferreri C, Landais Y, Timokhin VI. Chem. Rev. 2018; 118: 6516
- 5 ElMarrouni A, Ritts CB, Balsells J. Chem. Sci. 2018; 9: 6639
- 6a Constantin T, Zanini M, Regni A, Sheikh NS, Juliá F, Leonori D. Science 2020; 367: 1021
- 6b Buettner CS, Schnürch M, Bica-Schröder K. J. Org. Chem. 2022; 87: 11042
- 7 Pillitteri S, Walia R, Van der Eycken EV, Sharma UK. Chem. Sci. 2024; 15: 8813
- 8a Wan T, Capaldo L, Eavelli D, Vitullo W, de Zwart FJ, de Bruin B, Noël T. J. Am. Chem. Soc. 2023; 145: 991
- 8b Wan T, Ciszewski ŁW, Ravelli D, Capaldo L. Org. Lett. 2024; 26: 5839
- 9a Kawamoto T, Uehara S, Hirao H, Fukuyama T, Matsubara H, Ryu I. J. Org. Chem. 2014; 79: 3999
- 9b Supranovich V, Levin VV, Struchkova MI, Korlyukov AA, Dilman AD. Org. Lett. 2017; 19: 3215
- 10 Ji C.-L, Zhai X, Fang Q.-Y, Zhu C, Han J, Xie J. Chem. Soc. Rev. 2023; 52: 6120
- 11a Curran DP, Bosch E, Kaplan J, Newcomb M. J. Org. Chem. 1989; 54: 1826
- 11b Curran DP, Jasperse CP, Totleben MJ. J. Org. Chem. 1991; 56: 7169
- 12 Baban JA, Roberts BP. J. Chem. Soc., Perkin Trans. 1 1993; 891
- 13 Zhang Z.-Q, Sang Y.-Q, Wang C.-Q, Dai P, Xue X.-S, Piper JL, Peng Z.-H, Ma J.-A, Zhang F.-G, Wu J. J. Am. Chem. Soc. 2022; 144: 14288
- 14 Zhang Z, Tilby MJ, Leonori D. Nat. Synth. 2024; 3: 1221
- 15 Park C, Gi S, Yoon S, Kwon SJ, Lee S. ChemRxiv 2024; preprint; DOI
- 16 Buettner CS, Stavagna C, Tilby MJ, Górski B, Douglas JJ, Yasukawa N, Leonori D. J. Am. Chem. Soc. 2024; 146: 24042
- 17 Yoshida Y, Okada W, Takada K, Nakamura S, Yasukawa N. ChemRxiv 2024; , preprint; DOI:
- 18a Pitzer L, Schwarz JL, Glorius F. Chem. Sci. 2019; 10: 8285
- 18b Sharma S, Singh J, Sharma A. Adv. Synth. Catal. 2021; 363: 3146
- 18c Liu M, Ouyang X, Xuan C, Shu C. Org. Chem. Front. 2024; 11: 895
- 19a Nozawa-Kumada K, Onuma S, Ono K, Kumagai T, Iwakawa Y, Sato K, Shigeno M, Kondo Y. Chem. Eur. J. 2023; 29: e202203143
- 19b Gao L, Wang G, Cao J, Yuan D, Xu C, Guo X, Li S. Chem. Commun. 2018; 54: 11534
- 19c Peng L, Zheqi L, Yin G. Org. Lett. 2018; 20: 1880
- 19d KC S, Dhungana RK, Shrestha B, Thapa S, Khanal N, Basnet P, Lebrun RW, Giri R. J. Am. Chem. Soc. 2018; 140: 9801
- 19e Xia P.-J, Ye Z.-P, Hu Y.-Z, Song D, Xiang H.-Y, Chen X.-Q, Yang H. Org. Lett. 2019; 21: 2658
- 19f Pandiri H, Gonnade RG, Punji B. Dalton Trans. 2018; 47: 16747
- 19g Capaldo L, Fagnoni M, Ravelli D. Chem. Eur. J. 2017; 23: 6527
- 19h Rohe S, Morris AO, McCallum T, Barriault L. Angew. Chem. Int. Ed. 2018; 57: 15664
- 19i Dong J, Wang X, Wang Z, Song H, Liu Y, Wang Q. Chem. Commun. 2019; 55: 11707
- 19j Supranovich VI, Levin VV, Kokorekin VA, Dilman AD. Adv. Synth. Catal. 2021; 363: 2888
- 19k Luo W, Yang Y, Fang Y, Zhang X, Jin X, Zhao G, Zhang L, Li Y, Zhou W, Xia T, Chen B. Adv. Synth. Catal. 2019; 361: 4215
- 19l Wang M, Tang B.-C, Wang J.-G, Xiang J.-C, Guan A.-Y, Huang P.-P, Guo W.-Y, Wua Y.-D, Wu A.-X. Chem. Commun. 2018; 54: 7641
- 19m Zhou F, Hu X, Zhang W, Li C.-J. J. Org. Chem. 2018; 83: 7416