RSS-Feed abonnieren
DOI: 10.1055/a-2415-8408
From Code to Clots: Applying Machine Learning to Clinical Aspects of Venous Thromboembolism Prevention, Diagnosis, and Management

Abstract
The high incidence of venous thromboembolism (VTE) globally and the morbidity and mortality burden associated with the disease make it a pressing issue. Machine learning (ML) can improve VTE prevention, detection, and treatment. The ability of this novel technology to process large amounts of high-dimensional data can help identify new risk factors and better risk stratify patients for thromboprophylaxis. Applications of ML for VTE include systems that interpret medical imaging, assess the severity of the VTE, tailor treatment according to individual patient needs, and identify VTE cases to facilitate surveillance. Generative artificial intelligence may be leveraged to design new molecules such as new anticoagulants, generate synthetic data to expand datasets, and reduce clinical burden by assisting in generating clinical notes. Potential challenges in the applications of these novel technologies include the availability of multidimensional large datasets, prospective studies and clinical trials to ensure safety and efficacy, continuous quality assessment to maintain algorithm accuracy, mitigation of unwanted bias, and regulatory and legal guardrails to protect patients and providers. We propose a practical approach for clinicians to integrate ML into research, from choosing appropriate problems to integrating ML into clinical workflows. ML offers much promise and opportunity for clinicians and researchers in VTE to translate this technology into the clinic and directly benefit the patients.
Publikationsverlauf
Eingereicht: 15. Juli 2024
Angenommen: 14. September 2024
Artikel online veröffentlicht:
10. Dezember 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Lutsey PL, Zakai NA. Epidemiology and prevention of venous thromboembolism. Nat Rev Cardiol 2023; 20 (04) 248-262
- 2 Sidney S, Lee C, Liu J, Khan SS, Lloyd-Jones DM, Rana JS. Age-adjusted mortality rates and age and risk-associated contributions to change in heart disease and stroke mortality, 2011-2019 and 2019-2020. JAMA Netw Open 2022; 5 (03) e223872
- 3 Office of the Surgeon General (US); National Heart, Lung, and Blood Institute (US). 2008
- 4 Fanikos J, Piazza G, Zayaruzny M, Goldhaber SZ. Long-term complications of medical patients with hospital-acquired venous thromboembolism. Thromb Haemost 2009; 102 (04) 688-693
- 5 Ferroni P, Zanzotto FM, Riondino S, Scarpato N, Guadagni F, Roselli M. Breast cancer prognosis using a machine learning approach. Cancers (Basel) 2019; 11 (03) 328
- 6 Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction. BMC Med Res Methodol 2019; 19 (01) 64
- 7 Chan HP, Samala RK, Hadjiiski LM, Zhou C. Deep learning in medical image analysis. Adv Exp Med Biol 2020; 1213: 3-21
- 8 Hirani R, Noruzi K, Khuram H. et al. Artificial intelligence and healthcare: a journey through history, present innovations, and future possibilities. Life (Basel) 2024; 14 (05) 557
- 9 Guetari R, Ayari H, Sakly H. Computer-aided diagnosis systems: a comparative study of classical machine learning versus deep learning-based approaches. Knowl Inf Syst 2023; 65 (10) 1-41
- 10 Huang S, Arpaci I, Al-Emran M, Kılıçarslan S, Al-Sharafi MA. A comparative analysis of classical machine learning and deep learning techniques for predicting lung cancer survivability. Multimedia Tools Appl 2023; 82 (22) 34183-34198
- 11 Wells PS, Anderson DR, Rodger M. et al. Excluding pulmonary embolism at the bedside without diagnostic imaging: management of patients with suspected pulmonary embolism presenting to the emergency department by using a simple clinical model and D-dimer. Ann Intern Med 2001; 135 (02) 98-107
- 12 Wicki J, Perrier A, Perneger TV, Bounameaux H, Junod AF. Predicting adverse outcome in patients with acute pulmonary embolism: a risk score. Thromb Haemost 2000; 84 (04) 548-552
- 13 Pereira FC, Borysov S. Machine Learning Fundamentals. Chapter 2 - Machine Learning Fundamentals. Elsevier; 2019: 9-29
- 14 Schulz MA, Yeo BTT, Vogelstein JT. et al. Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets. Nat Commun 2020; 11 (01) 4238
- 15 Vaswani A, Shazeer N, Parmar N. et al. Attention is all you need. arXiv:170603762 [cs] . 2017
- 16 Grinsztajn L, Oyallon E, Varoquaux G. Why do tree-based models still outperform deep learning on tabular data? arXiv;. 2022
- 17 Scikit-learn. Accessed September 25, 2024 at: https://scikit-learn.org/stable/about.html#citing-scikit-learn
- 18 Paszke A, Gross S, Massa F. et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: Advances in Neural Information Processing Systems 32 [Internet]. Curran Associates, Inc. Curran Associates, Inc; 2019: 8024-35
- 19 Abadi M, Agarwal A, Barham P. et al. ensorFlow: Large-scale machine learning on heterogeneous systems. arXiv 2015; 1603.04467
- 20 Salahuddin Z, Woodruff HC, Chatterjee A, Lambin P. Transparency of deep neural networks for medical image analysis: a review of interpretability methods. Comput Biol Med 2022; 140: 105111
- 21 Habehh H, Gohel S. Machine learning in healthcare. Curr Genomics 2021; 22 (04) 291-300
- 22 Tufail S, Riggs H, Tariq M, Sarwat AI. Advancements and challenges in machine learning: a comprehensive review of models, libraries, applications, and algorithms. Electronics (Basel) 2023; 12 (08)
- 23 Eckardt JN, Bornhäuser M, Wendt K, Middeke JM. Semi-supervised learning in cancer diagnostics. Front Oncol 2022; 12: 960984
- 24 He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. arXiv; 2015
- 25 Devlin J, Chang M-W, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. arXiv:181004805 [cs] . 2018
- 26 Brown TB, Mann B, Ryder N. et al. Language Models Are Few-Shot Learners. arXiv; 2020
- 27 Jalali-Najafabadi F, Stadler M, Dand N. et al; BADBIR Study Group, BSTOP Study Group. Application of information theoretic feature selection and machine learning methods for the development of genetic risk prediction models. Sci Rep 2021; 11 (01) 23335
- 28 Luo W, Phung D, Tran T. et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J Med Internet Res 2016; 18 (12) e323
- 29 Schünemann HJ, Cushman M, Burnett AE. et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: prophylaxis for hospitalized and nonhospitalized medical patients. Blood Adv 2018; 2 (22) 3198-3225
- 30 Key NS, Khorana AA, Kuderer NM. et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: ASCO Clinical Practice Guideline Update. J Clin Oncol 2020; 38 (05) 496-520
- 31 Ding R, Ding Y, Zheng D. et al. Machine learning-based screening of risk factors and prediction of deep vein thrombosis and pulmonary embolism after hip arthroplasty. Clin Appl Thromb Hemost 2023; 29: 10 760296231186145
- 32 Liu Y, Song C, Tian Z, Shen W. Ten-year multicenter retrospective study utilizing machine learning algorithms to identify patients at high risk of venous thromboembolism after radical gastrectomy. Int J Gen Med 2023; 16: 1909-1925
- 33 He L, Luo L, Hou X. et al. Predicting venous thromboembolism in hospitalized trauma patients: a combination of the Caprini score and data-driven machine learning model. BMC Emerg Med 2021; 21 (01) 60
- 34 Nafee T, Gibson CM, Travis R. et al. Machine learning to predict venous thrombosis in acutely ill medical patients. Res Pract Thromb Haemost 2020; 4 (02) 230-237
- 35 Sheng W, Wang X, Xu W, Hao Z, Ma H, Zhang S. Development and validation of machine learning models for venous thromboembolism risk assessment at admission: a retrospective study. Front Cardiovasc Med 2023; 10: 1198526
- 36 Park JI, Kim D, Lee JA, Zheng K, Amin A. Personalized risk prediction for 30-day readmissions with venous thromboembolism using machine learning. J Nurs Scholarsh 2021; 53 (03) 278-287
- 37 Qin L, Liang Z, Xie J. et al. Development and validation of machine learning models for postoperative venous thromboembolism prediction in colorectal cancer inpatients: a retrospective study. J Gastrointest Oncol 2023; 14 (01) 220-232
- 38 Mantha S, Chatterjee S, Singh R. et al. Application of machine learning to the prediction of cancer-associated venous thromboembolism. Res Sq 2023:rs.3.rs-2870367
- 39 Rasouli Dezfouli E, Delen D, Zhao H, Davazdahemami B. A machine learning framework for assessing the risk of venous thromboembolism in patients undergoing hip or knee replacement. J Healthc Inform Res 2022; 6 (04) 423-441
- 40 Nudel J, Bishara AM, de Geus SWL. et al. Development and validation of machine learning models to predict gastrointestinal leak and venous thromboembolism after weight loss surgery: an analysis of the MBSAQIP database. Surg Endosc 2021; 35 (01) 182-191
- 41 Katiyar P, Chase H, Lenke LG, Weidenbaum M, Sardar ZM. Using machine learning (ML) models to predict risk of venous thromboembolism (VTE) following spine surgery. Clin Spine Surg 2023; 36 (10) E453-E456
- 42 Yan YD, Yu Z, Ding LP. et al. Machine learning to dynamically predict in-hospital venous thromboembolism after inguinal hernia surgery: results from the CHAT-1 study. Clin Appl Thromb Hemost 2023; 29: 10 760296231171082
- 43 Franco-Moreno A, Madroñal-Cerezo E, Muñoz-Rivas N, Torres-Macho J, Ruiz-Giardín JM, Ancos-Aracil CL. Prediction of venous thromboembolism in patients with cancer using machine learning approaches: a systematic review and meta-analysis. JCO Clin Cancer Inform 2023; 7: e2300060
- 44 Michtalik HJ, Carolan HT, Haut ER. et al. Use of provider-level dashboards and pay-for-performance in venous thromboembolism prophylaxis. J Hosp Med 2015; 10 (03) 172-178
- 45 Child S, Sheaff R, Boiko O, Bateman A, Gericke CA. Has incentive payment improved venous thrombo-embolism risk assessment and treatment of hospital in-patients?. F1000 Res 2013; 2: 41
- 46 Chiasakul T, Lam BD, McNichol M. et al. Artificial intelligence in the prediction of venous thromboembolism: a systematic review and pooled analysis. Eur J Haematol 2023; 111 (06) 951-962
- 47 Darzi AJ, Repp AB, Spencer FA. et al. Risk-assessment models for VTE and bleeding in hospitalized medical patients: an overview of systematic reviews. Blood Adv 2020; 4 (19) 4929-4944
- 48 Chen R, Petrazzini BO, Malick WA, Rosenson RS, Do R. Prediction of venous thromboembolism in diverse populations using machine learning and structured electronic health records. Arterioscler Thromb Vasc Biol 2024; 44 (02) 491-504
- 49 Ortel TL, Neumann I, Ageno W. et al. American Society of Hematology 2020 guidelines for management of venous thromboembolism: treatment of deep vein thrombosis and pulmonary embolism. Blood Adv 2020; 4 (19) 4693-4738
- 50 Park HS, Ahn BJ, Jun JK. Placental transfer of clarithromycin in human pregnancies with preterm premature rupture of membranes. J Perinat Med 2012; 40 (06) 641-646
- 51 Gottsäter A, Ekelund U, Melander O, Björkelund A, Ohlsson B. Cohort study of prediction of venous thromboembolism in emergency department patients with extremity symptoms. Intern Emerg Med 2024;
- 52 Turizo MJF, Patell R, Zwicker JI. Identifying novel biomarkers using proteomics to predict cancer-associated thrombosis. Bleeding Thromb Vasc Biol 2024; 3 (Suppl. 01) 120
- 53 Naik N, Hameed BMZ, Shetty DK. et al. Legal and ethical consideration in artificial intelligence in healthcare: Who takes responsibility?. Front Surg 2022; 9: 862322
- 54 Schmuelling L, Franzeck FC, Nickel CH. et al. Deep learning-based automated detection of pulmonary embolism on CT pulmonary angiograms: no significant effects on report communication times and patient turnaround in the emergency department nine months after technical implementation. Eur J Radiol 2021; 141: 109816
- 55 Fisher RE, Scott JA, Palmer EL. Neural networks in ventilation-perfusion imaging. Radiology 1996; 198 (03) 699-706
- 56 Jamin A, Hoffmann C, Mahe G, Bressollette L, Humeau-Heurtier A. Pulmonary embolism detection on venous thrombosis ultrasound images with bi-dimensional entropy measures: preliminary results. Med Phys 2023; 50 (12) 7840-7851
- 57 Nakayama Y, Sato M, Okamoto M. et al. Deep learning-based classification of adequate sonographic images for self-diagnosing deep vein thrombosis. PLoS One 2023; 18 (03) e0282747
- 58 Soffer S, Klang E, Shimon O. et al. Deep learning for pulmonary embolism detection on computed tomography pulmonary angiogram: a systematic review and meta-analysis. Sci Rep 2021; 11 (01) 15814
- 59 Kligerman SJ, Mitchell JW, Sechrist JW, Meeks AK, Galvin JR, White CS. Radiologist performance in the detection of pulmonary embolism: features that favor correct interpretation and risk factors for errors. J Thorac Imaging 2018; 33 (06) 350-357
- 60 Das M, Mühlenbruch G, Helm A. et al. Computer-aided detection of pulmonary embolism: influence on radiologists' detection performance with respect to vessel segments. Eur Radiol 2008; 18 (07) 1350-1355
- 61 Eng J, Krishnan JA, Segal JB. et al. Accuracy of CT in the diagnosis of pulmonary embolism: a systematic literature review. AJR Am J Roentgenol 2004; 183 (06) 1819-1827
- 62 Abdulaal L, Maiter A, Salehi M. et al. A systematic review of artificial intelligence tools for chronic pulmonary embolism on CT pulmonary angiography. Front Radiol 2024; 4: 1335349
- 63 Rivera-Lebron B, McDaniel M, Ahrar K. et al; PERT Consortium. Diagnosis, treatment and follow up of acute pulmonary embolism: consensus practice from the PERT Consortium. Clin Appl Thromb Hemost 2019; 25: 10 76029619853037
- 64 Deng RX, Zhu XL, Zhang AB. et al. Machine learning algorithm as a prognostic tool for venous thromboembolism in allogeneic transplant patients. Transplant Cell Ther 2023; 29 (01) 57.e1-57.e10
- 65 Mora D, Nieto JA, Mateo J. et al; RIETE Investigators. Machine learning to predict outcomes in patients with acute pulmonary embolism who prematurely discontinued anticoagulant therapy. Thromb Haemost 2022; 122 (04) 570-577
- 66 Klok FA, Huisman MV. How I assess and manage the risk of bleeding in patients treated for venous thromboembolism. Blood 2020; 135 (10) 724-734
- 67 Mora D, Mateo J, Nieto JA. et al; Registro Informatizado de Enfermedad TromboEmbólica (RIETE) Investigators. Machine learning to predict major bleeding during anticoagulation for venous thromboembolism: possibilities and limitations. Br J Haematol 2023; 201 (05) 971-981
- 68 Johnstone C, Rich SE. Bleeding in cancer patients and its treatment: a review. Ann Palliat Med 2018; 7 (02) 265-273
- 69 Grdinic AG, Radovanovic S, Gleditsch J. et al. Developing a machine learning model for bleeding prediction in patients with cancer-associated thrombosis receiving anticoagulation therapy. J Thromb Haemost 2024; 22 (04) 1094-1104
- 70 Shahryari Fard S, Perkins TJ, Wells PS. A deep-learning approach to predict bleeding risk over time in patients on extended anticoagulation therapy. J Thromb Haemost 2024; 22 (07) 1997-2008
- 71 Choi H, Kang HJ, Ahn I. et al. Machine learning models to predict the warfarin discharge dosage using clinical information of inpatients from South Korea. Sci Rep 2023; 13 (01) 22461
- 72 Ravvaz K, Weissert JA, Ruff CT, Chi CL, Tonellato PJ. Personalized anticoagulation: optimizing warfarin management using genetics and simulated clinical trials. Circ Cardiovasc Genet 2017; 10 (06) e001804
- 73 Meid AD, Wirbka L, Groll A, Haefeli WE, Haefeli WE. ARMIN Study Group. Can machine learning from real-world data support drug treatment decisions? A prediction modeling case for direct oral anticoagulants. Med Decis Making 2022; 42 (05) 587-598
- 74 Zhan C, Battles J, Chiang YP, Hunt D. The validity of ICD-9-CM codes in identifying postoperative deep vein thrombosis and pulmonary embolism. Jt Comm J Qual Patient Saf 2007; 33 (06) 326-331
- 75 Fang MC, Fan D, Sung SH. et al. Validity of using inpatient and outpatient administrative codes to identify acute venous thromboembolism: the CVRN VTE study. Med Care 2017; 55 (12) e137-e143
- 76 Fanni SC, Febi M, Aghakhanyan G, Neri E. Natural language processing. In: Klontzas ME, Fanni SC, Neri E. eds. Introduction to Artificial Intelligence. Springer International Publishing;; 2023: 87-99
- 77 Lam BD, Chrysafi P, Chiasakul T. et al. Machine learning natural language processing for identifying venous thromboembolism: systematic review and meta-analysis. Blood Adv 2024; 8 (12) 2991-3000
- 78 Li A, da Costa Jr WL, Guffey D. et al. Developing and optimizing a computable phenotype for incident venous thromboembolism in a longitudinal cohort of patients with cancer. Res Pract Thromb Haemost 2022; 6 (04) e12733
- 79 Taggart M, Chapman WW, Steinberg BA. et al. Comparison of 2 natural language processing methods for identification of bleeding among critically ill patients. JAMA Netw Open 2018; 1 (06) e183451
- 80 Shung D, Tsay C, Laine L. et al. Early identification of patients with acute gastrointestinal bleeding using natural language processing and decision rules. J Gastroenterol Hepatol 2021; 36 (06) 1590-1597
- 81 Gu K, Lee JH, Shin J. et al. Using GPT-4 for LI-RADS feature extraction and categorization with multilingual free-text reports. Liver Int 2024; 44 (07) 1578-1587
- 82 Saab K, Tu T, Weng W-H. et al. Capabilities of Gemini Models in Medicine. arXiv; 2024
- 83 Bommasani R, Hudson DA, Adeli E. et al. On the opportunities and risks of foundation models. arXiv:210807258 [cs] . 2021
- 84 Meskó B. Prompt engineering as an important emerging skill for medical professionals: tutorial. J Med Internet Res 2023; 25: e50638
- 85 Wang L, Chen X, Deng X. et al. Prompt engineering in consistency and reliability with the evidence-based guideline for LLMs. NPJ Digit Med 2024; 7 (01) 41
- 86 Touvron H, Lavril T, Izacard G. et al. LlaMA: Open and Efficient Foundation Language Models. arXiv; 2023
- 87 Groeneveld D, Beltagy I, Walsh P. et al. OLMo: Accelerating the Science of Language Models. arXiv; 2024
- 88 Pecher B, Srba I, Bielikova M. Comparing Specialised Small and General Large Language Models on Text Classification: 100 Labelled Samples to Achieve Break-Even Performance. arXiv; 2024
- 89 Van Veen D, Van Uden C, Blankemeier L. et al. Clinical text summarization: adapting large language models can outperform human experts. Res Sq 2023; rs.3.rs-3483777
- 90 Van Veen D, Van Uden C, Blankemeier L. et al. Adapted large language models can outperform medical experts in clinical text summarization. Nat Med 2024; 30 (04) 1134-1142
- 91 Ge J, Li M, Delk MB, Lai JC. A comparison of a large language model vs manual chart review for the extraction of data elements from the electronic health record. Gastroenterology 2024; 166 (04) 707-709.e3
- 92 Somani SS, Honarvar H, Narula S. et al. Development of a machine learning model using electrocardiogram signals to improve acute pulmonary embolism screening. Eur Heart J Digit Health 2021; 3 (01) 56-66
- 93 Rovenchak A, Druchok M. Machine learning-assisted search for novel coagulants: when machine learning can be efficient even if data availability is low. J Comput Chem 2024; 45 (13) 937-952
- 94 Bordukova M, Makarov N, Rodriguez-Esteban R, Schmich F, Menden MP. Generative artificial intelligence empowers digital twins in drug discovery and clinical trials. Expert Opin Drug Discov 2024; 19 (01) 33-42
- 95 Ktena I, Wiles O, Albuquerque I. et al. Generative models improve fairness of medical classifiers under distribution shifts. Nat Med 2024; 30 (04) 1166-1173
- 96 Mateen BA, Liley J, Denniston AK, Holmes CC, Vollmer SJ. Improving the quality of machine learning in health applications and clinical research. Nat Mach Intell 2020; 2 (10) 554-556
- 97 Ng MY, Youssef A, Miner AS. et al. Perceptions of data set experts on important characteristics of health data sets ready for machine learning: a qualitative study. JAMA Netw Open 2023; 6 (12) e2345892
- 98 Chato L, Regentova E. Survey of transfer learning approaches in the machine learning of digital health sensing data. J Pers Med 2023; 13 (12) 1703
- 99 Panch T, Mattie H, Celi LA. The “inconvenient truth” about AI in healthcare. NPJ Digit Med 2019; 2: 77
- 100 Teo ZL, Jin L, Li S. et al. Federated machine learning in healthcare: a systematic review on clinical applications and technical architecture. Cell Rep Med 2024; 5 (02) 101419
- 101 Arora A, Arora A. Machine learning models trained on synthetic datasets of multiple sample sizes for the use of predicting blood pressure from clinical data in a national dataset. PLoS One 2023; 18 (03) e0283094
- 102 Coombs L, Orlando A, Wang X. et al. A machine learning framework supporting prospective clinical decisions applied to risk prediction in oncology. NPJ Digit Med 2022; 5 (01) 117
- 103 Bartels R, Dudink J, Haitjema S, Oberski D, van 't Veen A. A perspective on a quality management system for AI/ML-based clinical decision support in hospital care. Front Digit Health 2022; 4: 942588
- 104 Sahiner B, Chen W, Samala RK, Petrick N. Data drift in medical machine learning: implications and potential remedies. Br J Radiol 2023; 96 (1150) 20220878
- 105 Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat Med 2022; 28 (01) 31-38
- 106 Ferrara C, Sellitto G, Ferrucci F, Palomba F, De Lucia A. Fairness-aware machine learning engineering: How far are we?. Empir Softw Eng 2024; 29 (01) 9
- 107 Maccaro A, Stokes K, Statham L. et al. Clearing the fog: a scoping literature review on the ethical issues surrounding artificial intelligence-based medical devices. J Pers Med 2024; 14 (05) 443
- 108 Lau BD, Haider AH, Streiff MB. et al. Eliminating health care disparities with mandatory clinical decision support: the venous thromboembolism (VTE) example. Med Care 2015; 53 (01) 18-24
- 109 Lam BD, Dodge LE, Zerbey S. et al. The potential use of artificial intelligence for venous thromboembolism prophylaxis and management: clinician and healthcare informatician perspectives. Sci Rep 2024; 14 (01) 12010
- 110 Bienefeld N, Boss JM, Lüthy R. et al. Solving the explainable AI conundrum by bridging clinicians' needs and developers' goals. NPJ Digit Med 2023; 6 (01) 94
- 111 Lu SC, Swisher CL, Chung C, Jaffray D, Sidey-Gibbons C. On the importance of interpretable machine learning predictions to inform clinical decision making in oncology. Front Oncol 2023; 13: 1129380
- 112 Kolbinger FR, Veldhuizen GP, Zhu J, Truhn D, Kather JN. Reporting guidelines in medical artificial intelligence: a systematic review and meta-analysis. Commun Med (Lond) 2024; 4 (01) 71
- 113 US Food and Drug Administration. Good machine learning practice for medical device development: guiding principles. Accessed September 26, 2024 at: https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles
- 114 White V, Nath A, Stansby G. Litigation claims relating to venous thromboembolism in the NHS. Phlebology 2015; 30 (06) 389-396
- 115 Wilson E, Phair J, Carnevale M, Koleilat I. Common reasons for malpractice lawsuits involving pulmonary embolism and deep vein thrombosis. J Surg Res 2020; 245: 212-216
- 116 Hofer IS, Burns M, Kendale S, Wanderer JP. Realistically integrating machine learning into clinical practice: a road map of opportunities, challenges, and a potential future. Anesth Analg 2020; 130 (05) 1115-1118
- 117 Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med 2019; 17 (01) 195
- 118 Touma S, Antaki F, Duval R. Development of a code-free machine learning model for the classification of cataract surgery phases. Sci Rep 2022; 12 (01) 2398
- 119 TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ 2024; 385: q902
- 120 Blake SR, Das N. Deploying artificial intelligence software in an NHS trust: a how-to guide for clinicians. Br J Radiol 2024; 97 (1153) 68-72
- 121 Oala L, Murchison AG, Balachandran P. et al. Machine learning for health: algorithm auditing & quality control. J Med Syst 2021; 45 (12) 105
- 122 Bates DW, Levine D, Syrowatka A. et al. The potential of artificial intelligence to improve patient safety: a scoping review. NPJ Digit Med 2021; 4 (01) 54
- 123 Cahan N, Klang E, Marom EM. et al. Multimodal fusion models for pulmonary embolism mortality prediction. Sci Rep 2023; 13 (01) 7544
- 124 Chapman BE, Lee S, Kang HP, Chapman WW. Document-level classification of CT pulmonary angiography reports based on an extension of the ConText algorithm. J Biomed Inform 2011; 44 (05) 728-737
- 125 Banerjee I, Chen MC, Lungren MP, Rubin DL. Radiology report annotation using intelligent word embeddings: applied to multi-institutional chest CT cohort. J Biomed Inform 2018; 77: 11-20
- 126 Chen MC, Ball RL, Yang L. et al. Deep learning to classify radiology free-text reports. Radiology 2018; 286 (03) 845-852