Subscribe to RSS
DOI: 10.1055/a-2404-0216
The Diagnostic Assessment of Platelet Function Defects - Part 2: Update on Platelet Disorders

Abstract
Congenital platelet disorders are rare and targeted treatment is usually not possible. Inherited platelet function disorders (iPFDs) can affect surface receptors and multiple platelet responses such as defects of platelet granules, signal transduction, and procoagulant activity. If iPFDs are also associated with a reduced platelet count (thrombocytopenia), it is not uncommon to be misdiagnosed as immune thrombocytopenia. Because the bleeding tendency of the different platelet disorders is variable, a correct diagnosis of the platelet defect based on phenotyping, function analysis, and genotyping is essential, especially in the perioperative setting. In the case of a platelet receptor deficiency, such as Bernard–Soulier syndrome or Glanzmann thrombasthenia, not only the bleeding tendency but also the risk of isoimmunization after platelet transfusions or pregnancy has to be considered. Platelet granule disorders are commonly associated with either intrinsically quantitative or qualitative granule defects due to impaired granulopoiesis, or granule release defects, which can also affect additional signaling pathways. Functional platelet defects require expertise in the clinical bleeding tendency in terms of the disorder when using antiplatelet agents or other medications that affect platelet function. Platelet defects associated with hematological-oncological diseases require comprehensive information about the patient including the clinical implication of the genetic testing. This review focuses on genetics, clinical presentation, and laboratory platelet function analysis of iPFDs with or without reduced platelet number. As platelet defects affecting the cytoskeleton usually show thrombocytopenia, but less impaired or normal platelet functional responses, they are not specifically addressed.
Keywords
diagnosis management - inherited coagulation disorders - inherited/acquired platelet disorders - platelet pathology/inheritedData Availability
Data generated from this study are available from the corresponding author upon reasonable request.
Publication History
Received: 26 February 2024
Accepted: 21 August 2024
Article published online:
27 January 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Zhao X, Alibhai D, Walsh TG. et al. Highly efficient platelet generation in lung vasculature reproduced by microfluidics. Nat Commun 2023; 14 (01) 4026
- 2 Versteeg HH, Heemskerk JW, Levi M, Reitsma PH. New fundamentals in hemostasis. Physiol Rev 2013; 93 (01) 327-358
- 3 Shapiro AD. Platelet function disorders. Haemophilia 2000; 6 (Suppl. 01) 120-127
- 4 Boeckelmann D, Glonnegger H, Sandrock-Lang K, Zieger B. Pathogenic aspects of inherited platelet disorders. Hamostaseologie 2021; 41 (06) 460-468
- 5 Bargehr C, Knöfler R, Streif W. Treatment of inherited platelet disorders: current status and future options. Hamostaseologie 2023; 43 (04) 261-270
- 6 Gresele P, Falcinelli E, Bury L. et al. Association of laboratory test results with the bleeding history in patients with inherited platelet function disorders (the Bleeding Assessment Tool - LABoratory tests substudy): communication from the Platelet Physiology ISTH-SSC. Res Pract Thromb Haemost 2023; 8 (01) 102305
- 7 Lanza F. Bernard-Soulier syndrome (hemorrhagiparous thrombocytic dystrophy). Orphanet J Rare Dis 2006; 1: 46
- 8 Savoia A, Kunishima S, De Rocco D. et al. Spectrum of the mutations in Bernard-Soulier syndrome. Hum Mutat 2014; 35 (09) 1033-1045
- 9 Nurden AT, Nurden P. Inherited thrombocytopenias: history, advances and perspectives. Haematologica 2020; 105 (08) 2004-2019
- 10 Botero JP, Lee K, Branchford BR. et al; ClinGen Platelet Disorder Variant Curation Expert Panel. Glanzmann thrombasthenia: genetic basis and clinical correlates. Haematologica 2020; 105 (04) 888-894
- 11 Huang J, Li X, Shi X. et al. Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting. J Hematol Oncol 2019; 12 (01) 26
- 12 Poon MC, Di Minno G, d'Oiron R, Zotz R. New insights into the treatment of Glanzmann thrombasthenia. Transfus Med Rev 2016; 30 (02) 92-99
- 13 Krause KA, Graham BC. Glanzmann thrombasthenia. In: StatPearls. Treasure Island, FL:: StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC; 2023
- 14 Gresele P, Falcinelli E, Bury L. et al; BAT-VAL Study Investigators. The ISTH bleeding assessment tool as predictor of bleeding events in inherited platelet disorders: communication from the ISTH SSC Subcommittee on Platelet Physiology. J Thromb Haemost 2021; 19 (05) 1364-1371
- 15 Rodeghiero F, Tosetto A, Abshire T. et al; ISTH/SSC Joint VWF and Perinatal/Pediatric Hemostasis Subcommittees Working Group. ISTH/SSC bleeding assessment tool: a standardized questionnaire and a proposal for a new bleeding score for inherited bleeding disorders. J Thromb Haemost 2010; 8 (09) 2063-2065
- 16 Rand ML, Reddy EC, Israels SJ. Laboratory diagnosis of inherited platelet function disorders. Transfus Apher Sci 2018; 57 (04) 485-493
- 17 Nurden AT, Fiore M, Nurden P, Pillois X. Glanzmann thrombasthenia: a review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models. Blood 2011; 118 (23) 5996-6005
- 18 Favaloro EJ. Clinical utility of closure times using the platelet function analyzer-100/200. Am J Hematol 2017; 92 (04) 398-404
- 19 Kaufmann J, Adler M, Alberio L, Nagler M. Utility of the platelet function analyzer in patients with suspected platelet function disorders: diagnostic accuracy study. TH Open 2020; 4 (04) e427-e436
- 20 Moenen FCJI, Vries MJA, Nelemans PJ. et al. Screening for platelet function disorders with Multiplate and platelet function analyzer. Platelets 2019; 30 (01) 81-87
- 21 Nurden AT. Acquired Glanzmann thrombasthenia: from antibodies to anti-platelet drugs. Blood Rev 2019; 36: 10-22
- 22 van Velzen JF, Laros-van Gorkom BA, Pop GA, van Heerde WL. Multicolor flow cytometry for evaluation of platelet surface antigens and activation markers. Thromb Res 2012; 130 (01) 92-98
- 23 Solh T, Botsford A, Solh M. Glanzmann's thrombasthenia: pathogenesis, diagnosis, and current and emerging treatment options. J Blood Med 2015; 6: 219-227
- 24 Greinacher A, Pecci A, Kunishima S. et al. Diagnosis of inherited platelet disorders on a blood smear: a tool to facilitate worldwide diagnosis of platelet disorders. J Thromb Haemost 2017; 15 (07) 1511-1521
- 25 Grainger JD, Thachil J, Will AM. How we treat the platelet glycoprotein defects; Glanzmann thrombasthenia and Bernard Soulier syndrome in children and adults. Br J Haematol 2018; 182 (05) 621-632
- 26 Bury L, Falcinelli E, Mezzasoma AM, Guglielmini G, Momi S, Gresele P. Platelet dysfunction in platelet-type von Willebrand disease due to the constitutive triggering of the Lyn-PECAM1 inhibitory pathway. Haematologica 2022; 107 (07) 1643-1654
- 27 Bernard J, Soulier JP. [On a new variety of congenital thrombocytary hemo-ragiparous dystrophy]. Sem Hop 1948; 24 (Spec. No.): 3217-3223
- 28 Noris P, Perrotta S, Bottega R. et al. Clinical and laboratory features of 103 patients from 42 Italian families with inherited thrombocytopenia derived from the monoallelic Ala156Val mutation of GPIbα (Bolzano mutation). Haematologica 2012; 97 (01) 82-88
- 29 Savoia A, Pastore A, De Rocco D. et al. Clinical and genetic aspects of Bernard-Soulier syndrome: searching for genotype/phenotype correlations. Haematologica 2011; 96 (03) 417-423
- 30 Luo SZ, Mo X, Afshar-Kharghan V, Srinivasan S, López JA, Li R. Glycoprotein Ibalpha forms disulfide bonds with 2 glycoprotein Ibbeta subunits in the resting platelet. Blood 2007; 109 (02) 603-609
- 31 Nurden AT, Caen JP. Specific roles for platelet surface glycoproteins in platelet function. Nature 1975; 255 (5511) 720-722
- 32 Modderman PW, Admiraal LG, Sonnenberg A, von dem Borne AE. Glycoproteins V and Ib-IX form a noncovalent complex in the platelet membrane. J Biol Chem 1992; 267 (01) 364-369
- 33 Andrews RK, Berndt MC. Bernard-Soulier syndrome: an update. Semin Thromb Hemost 2013; 39 (06) 656-662
- 34 Andrews RK, Fox JE. Identification of a region in the cytoplasmic domain of the platelet membrane glycoprotein Ib-IX complex that binds to purified actin-binding protein. J Biol Chem 1992; 267 (26) 18605-18611
- 35 Beck S, Öftering P, Li R. et al. Platelet glycoprotein V spatio-temporally controls fibrin formation. Nat Cardiovasc Res 2023; 2 (04) 368-382
- 36 Gresele P. Subcommittee on Platelet Physiology of the International Society on Thrombosis and Hemostasis. Diagnosis of inherited platelet function disorders: guidance from the SSC of the ISTH. J Thromb Haemost 2015; 13 (02) 314-322
- 37 Harrison P, Mackie I, Mumford A. et al; British Committee for Standards in Haematology. Guidelines for the laboratory investigation of heritable disorders of platelet function. Br J Haematol 2011; 155 (01) 30-44
- 38 Dörmann D, Clemetson KJ, Kehrel BE. The GPIb thrombin-binding site is essential for thrombin-induced platelet procoagulant activity. Blood 2000; 96 (07) 2469-2478
- 39 Barozzi S, Pecci A, Marinoni M. et al. GP1BB c.179C > T is the most frequent cause of monoallelic Bernard-Soulier syndrome in the Italian population after the Bolzano variant: a report of two new families. Ann Hematol 2023; 102 (03) 677-679
- 40 Herken K, Glauner M, Robert SC. et al. Age-dependent control of collagen-dependent platelet responses by thrombospondin-1-comparative analysis of platelets from neonates, children, adolescents, and adults. Int J Mol Sci 2021; 22 (09) 4883
- 41 Alessi MC, Sié P, Payrastre B. Strengths and weaknesses of light transmission aggregometry in diagnosing hereditary platelet function disorders. J Clin Med 2020; 9 (03) 763
- 42 Othman M, Gresele P. Guidance on the diagnosis and management of platelet-type von Willebrand disease: a communication from the Platelet Physiology Subcommittee of the ISTH. J Thromb Haemost 2020; 18 (08) 1855-1858
- 43 Kaur H, Corscadden K, Ware J, Othman M. Thrombocytopathy leading to impaired in vivo haemostasis and thrombosis in platelet type von Willebrand disease. Thromb Haemost 2017; 117 (03) 543-555
- 44 Blair P, Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates. Blood Rev 2009; 23 (04) 177-189
- 45 Araújo C, Duarte M, Torres LC. Analyses of the soluble levels of sCD40L, sCD62P and sCD40 in pediatric sickle cell anemia patients with abnormal transcranial Doppler. Hematol Transfus Cell Ther 2024; 46 (03) 237-241
- 46 Smith CW, Raslan Z, Parfitt L. et al. TREM-like transcript 1: a more sensitive marker of platelet activation than P-selectin in humans and mice. Blood Adv 2018; 2 (16) 2072-2078
- 47 Nurden AT, Nurden P. The gray platelet syndrome: clinical spectrum of the disease. Blood Rev 2007; 21 (01) 21-36
- 48 Glembotsky AC, De Luca G, Heller PG. A deep dive into the pathology of gray platelet syndrome: new insights on immune dysregulation. J Blood Med 2021; 12: 719-732
- 49 Albers CA, Cvejic A, Favier R. et al. Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome. Nat Genet 2011; 43 (08) 735-737
- 50 Gunay-Aygun M, Falik-Zaccai TC, Vilboux T. et al. NBEAL2 is mutated in gray platelet syndrome and is required for biogenesis of platelet α-granules. Nat Genet 2011; 43 (08) 732-734
- 51 Kahr WH, Hinckley J, Li L. et al. Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome. Nat Genet 2011; 43 (08) 738-740
- 52 Sowerby JM, Thomas DC, Clare S. et al. NBEAL2 is required for neutrophil and NK cell function and pathogen defense. J Clin Invest 2017; 127 (09) 3521-3526
- 53 Delage L, Carbone F, Riller Q. et al. NBEAL2 deficiency in humans leads to low CTLA-4 expression in activated conventional T cells. Nat Commun 2023; 14 (01) 3728
- 54 Nurden AT, Nurden P. Should any genetic defect affecting α-granules in platelets be classified as gray platelet syndrome?. Am J Hematol 2016; 91 (07) 714-718
- 55 OMIM. Arthrogryposis, renal dysfunction, and cholestasis 1; ARCS1; GPS online mendelian inheritance in man, OMIM®. Johns Hopkins University, Baltimore, MD; 2022 . Accessed August 29, 2024 at: https://omim.org/entry/613404
- 56 Songdej N, Rao AK. Hematopoietic transcription factor mutations: important players in inherited platelet defects. Blood 2017; 129 (21) 2873-2881
- 57 Blavignac J, Bunimov N, Rivard GE, Hayward CP. Quebec platelet disorder: update on pathogenesis, diagnosis, and treatment. Semin Thromb Hemost 2011; 37 (06) 713-720
- 58 Dupuis A, Bordet JC, Eckly A, Gachet C. Platelet δ-storage pool disease: an update. J Clin Med 2020; 9 (08) 2508
- 59 Fletcher SJ, Johnson B, Lowe GC. et al; UK Genotyping and Phenotyping of Platelets study group. SLFN14 mutations underlie thrombocytopenia with excessive bleeding and platelet secretion defects. J Clin Invest 2015; 125 (09) 3600-3605
- 60 Hayward CP, Moffat KA, Spitzer E. et al; NASCOLA Working Group on Platelet Dense Granule Deficiency. Results of an external proficiency testing exercise on platelet dense-granule deficiency testing by whole mount electron microscopy. Am J Clin Pathol 2009; 131 (05) 671-675
- 61 Mezzano D, Harrison P, Frelinger III AL. et al. Expert opinion on the use of platelet secretion assay for the diagnosis of inherited platelet function disorders: communication from the ISTH SSC Subcommittee on platelet physiology. J Thromb Haemost 2022; 20 (09) 2127-2135
- 62 Dawood BB, Lowe GC, Lordkipanidzé M. et al. Evaluation of participants with suspected heritable platelet function disorders including recommendation and validation of a streamlined agonist panel. Blood 2012; 120 (25) 5041-5049
- 63 [Anonym] . Diagnose von Thrombozytenfunktionsstörungen - Thrombozytopathien. In: AWMF-Register Nr 086–003, update 2/2018. Gesellschaft für Thrombose- und Hämostaseforschung (GTH e.v.); 2018
- 64 Zaninetti C, Leinøe E, Lozano ML. et al. Validation of immunofluorescence analysis of blood smears in patients with inherited platelet disorders. J Thromb Haemost 2023; 21 (04) 1010-1019
- 65 Bastida JM, Malvestiti S, Boeckelmann D. et al. A novel GATA1 variant in the C-terminal zinc finger compared with the platelet phenotype of patients with a likely pathogenic variant in the N-terminal zinc finger. Cells 2022; 11 (20) 3223
- 66 Jurk K, Adenaeuer A, Sollfrank S. et al. Novel GATA1 variant causing a bleeding phenotype associated with combined platelet α-/δ-storage pool deficiency and mild dyserythropoiesis modified by a SLC4A1 variant. Cells 2022; 11 (19) 3071
- 67 Jurk K, Shiravand Y. Platelet phenotyping and function testing in thrombocytopenia. J Clin Med 2021; 10 (05) 1114
- 68 Palma-Barqueros V, Revilla N, Sánchez A. et al. Inherited platelet disorders: an updated overview. Int J Mol Sci 2021; 22 (09) 4521
- 69 Rao AK, Jalagadugula G, Sun L. Inherited defects in platelet signaling mechanisms. Semin Thromb Hemost 2004; 30 (05) 525-535
- 70 Jandrot-Perrus M, Hermans C, Mezzano D. Platelet glycoprotein VI genetic quantitative and qualitative defects. Platelets 2019; 30 (06) 708-713
- 71 Marconi C, Di Buduo CA, LeVine K. et al. Loss-of-function mutations in PTPRJ cause a new form of inherited thrombocytopenia. Blood 2019; 133 (12) 1346-1357
- 72 Berrou E, Soukaseum C, Favier R. et al. A mutation of the human EPHB2 gene leads to a major platelet functional defect. Blood 2018; 132 (19) 2067-2077
- 73 Cattaneo M. The platelet P2Y12 receptor for adenosine diphosphate: congenital and drug-induced defects. Blood 2011; 117 (07) 2102-2112
- 74 Rolf N, Knoefler R, Bugert P. et al. Clinical and laboratory phenotypes associated with the aspirin-like defect: a study in 17 unrelated families. Br J Haematol 2009; 144 (03) 416-424
- 75 Adler DH, Cogan JD, Phillips III JA. et al. Inherited human cPLA(2alpha) deficiency is associated with impaired eicosanoid biosynthesis, small intestinal ulceration, and platelet dysfunction. J Clin Invest 2008; 118 (06) 2121-2131
- 76 Dragani A, Brancati F, Pascale S, Mattoscio D, Rocca B. Clinical and laboratory phenotype associated with the aspirin-like defect. Br J Haematol 2010; 148 (04) 661-663 , author reply 663–664
- 77 Offermanns S. Activation of platelet function through G protein-coupled receptors. Circ Res 2006; 99 (12) 1293-1304
- 78 Lee SB, Rao AK, Lee KH, Yang X, Bae YS, Rhee SG. Decreased expression of phospholipase C-beta 2 isozyme in human platelets with impaired function. Blood 1996; 88 (05) 1684-1691
- 79 Nagy Z, Smolenski A. Cyclic nucleotide-dependent inhibitory signaling interweaves with activating pathways to determine platelet responses. Res Pract Thromb Haemost 2018; 2 (03) 558-571
- 80 Nurden P, Stritt S, Favier R, Nurden AT. Inherited platelet diseases with normal platelet count: phenotypes, genotypes and diagnostic strategy. Haematologica 2021; 106 (02) 337-350
- 81 Jurk K, Schulz AS, Kehrel BE. et al. Novel integrin-dependent platelet malfunction in siblings with leukocyte adhesion deficiency-III (LAD-III) caused by a point mutation in FERMT3. Thromb Haemost 2010; 103 (05) 1053-1064
- 82 Canault M, Alessi MC. RasGRP2 structure, function and genetic variants in platelet pathophysiology. Int J Mol Sci 2020; 21 (03) 1075
- 83 Fernandez DI, Provenzale I, Canault M. et al. High-throughput microfluidic blood testing to phenotype genetically linked platelet disorders: an aid to diagnosis. Blood Adv 2023; 7 (20) 6163-6177
- 84 Körholz J, Lucas N, Boiti F. et al. Severe bleeding diathesis in siblings with platelet dysfunction due to a novel nonsense RASGRP2 mutation. TH Open 2020; 4 (04) e413-e416
- 85 Aliotta A, Bertaggia Calderara D, Zermatten MG, Marchetti M, Alberio L. Thrombocytopathies: not just aggregation defects-the clinical relevance of procoagulant platelets. J Clin Med 2021; 10 (05) 894
- 86 Podoplelova NA, Nechipurenko DY, Ignatova AA, Sveshnikova AN, Panteleev MA. Procoagulant platelets: mechanisms of generation and action. Hamostaseologie 2021; 41 (02) 146-153
- 87 Millington-Burgess SL, Harper MT. Gene of the issue: ANO6 and Scott syndrome. Platelets 2020; 31 (07) 964-967
- 88 van Geffen JP, Swieringa F, Heemskerk JW. Platelets and coagulation in thrombus formation: aberrations in the Scott syndrome. Thromb Res 2016; 141 (Suppl. 02) S12-S16
- 89 Nagy M, Mastenbroek TG, Mattheij NJA. et al. Variable impairment of platelet functions in patients with severe, genetically linked immune deficiencies. Haematologica 2018; 103 (03) 540-549
- 90 de Witt SM, Swieringa F, Cavill R. et al. Identification of platelet function defects by multi-parameter assessment of thrombus formation. Nat Commun 2014; 5: 4257
- 91 Scharf RE. Drugs that affect platelet function. Semin Thromb Hemost 2012; 38 (08) 865-883
- 92 McEwen BJ. The influence of diet and nutrients on platelet function. Semin Thromb Hemost 2014; 40 (02) 214-226
- 93 Khan MAN, Ghani U, Surani S, Aftab A. Vitamin B12 deficiency, a rare cause of isolated thrombocytopenia in adults. Cureus 2023; 15 (08) e44162
- 94 Ingeberg S, Stoffersen E. Platelet dysfunction in patients with vitamin B12 deficiency. Acta Haematol 1979; 61 (02) 75-79
- 95 Lutz J, Jurk K. Antiplatelet agents and anticoagulants in patients with chronic kidney disease - from pathophysiology to clinical practice. Curr Pharm Des 2017; 23 (09) 1366-1376
- 96 Cowman J, Richter L, Walsh R. et al. Dynamic platelet function is markedly different in patients with cancer compared to healthy donors. Platelets 2019; 30 (06) 737-742
- 97 Bacci M, Ferretti A, Marchetti M. et al. Autoimmune disorders of platelet function: systematic review of cases of acquired Glanzmann thrombasthenia and acquired delta storage pool disease. Blood Transfus 2022; 20 (05) 420-432
- 98 Adamzik M, Görlinger K, Peters J, Hartmann M. Whole blood impedance aggregometry as a biomarker for the diagnosis and prognosis of severe sepsis. Crit Care 2012; 16 (05) R204
- 99 Jurk K, Jahn UR, Van Aken H. et al. Platelets in patients with acute ischemic stroke are exhausted and refractory to thrombin, due to cleavage of the seven-transmembrane thrombin receptor (PAR-1). Thromb Haemost 2004; 91 (02) 334-344
- 100 Kalbhenn J, Pooth JS, Trummer G, Kranzhöfer D, Schlagenhauf A, Zieger B. Pervasive platelet secretion defects in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Cells 2023; 12 (01) 193
- 101 Pareti FI, Capitanio A, Mannucci L, Ponticelli C, Mannucci PM. Acquired dysfunction due to the circulation of “exhausted” platelets. Am J Med 1980; 69 (02) 235-240
- 102 Balle CM, Jeppesen AN, Christensen S, Hvas AM. Platelet function during extracorporeal membrane oxygenation in adult patients: a systematic review. Front Cardiovasc Med 2018; 5: 157
- 103 Schlagenhauf A, Kalbhenn J, Geisen U, Beyersdorf F, Zieger B. Acquired von Willebrand syndrome and platelet function defects during extracorporeal life support (mechanical circulatory support). Hamostaseologie 2020; 40 (02) 221-225
- 104 Kestin AS, Valeri CR, Khuri SF. et al. The platelet function defect of cardiopulmonary bypass. Blood 1993; 82 (01) 107-117
- 105 Geisen U, Brehm K, Trummer G. et al. Platelet secretion defects and acquired von Willebrand syndrome in patients with ventricular assist devices. J Am Heart Assoc 2018; 7 (02) e006519
- 106 Kalbhenn J, Schlagenhauf A, Rosenfelder S, Schmutz A, Zieger B. Acquired von Willebrand syndrome and impaired platelet function during venovenous extracorporeal membrane oxygenation: rapid onset and fast recovery. J Heart Lung Transplant 2018; 37 (08) 985-991