Subscribe to RSS
DOI: 10.1055/a-2375-3737
Inherited Variants in the COL11A, COL1A, COL5A1, COMP, GSTM1 Genes and the Risk of Carpal Tunnel Syndrome
Vererbte Varianten in den Genen COL11A, COL1A, COL5A1, COMP, GSTM1 und das Risiko eines KarpaltunnelsyndromsAbstract
The pathogenesis of most cases of carpal tunnel syndrome is not clearly defined. There are some aspects of the disease that suggest a potential effect of genetic predispositions. Mutations (variants) within the genes encoding various subtypes of collagen synthesis, oligomerisation in the endoplasmic reticulum and inactivation of reactive oxygen species may be involved in the development of carpal tunnel syndrome. The objective of this study was to determine the role of DNA alterations within the COL11A, COL1A, COL5A1, COMP and GSTM1 genes in the pathogenesis of carpal tunnel syndrome based on a Polish population. Study design. In the discovery phase, a total of 96 patients with familial aggregation of CTS were genotyped using a Next Generation Sequencing panel in order to find possible mutations within the studied genes. The potential pathogenicity of the detected variants was investigated using the predictions of several in-silico algorithms and the TaqMan technology. In the association phase of the study, a group of 345 CTS patients and 1035 healthy controls were genotyped. Results. A total of 35 splice-site or exonic non-synonymous variants were detected by NGS. We did not identify any clearly pathogenic or likely pathogenic alternations. The 30 variants were identified as benign or likely benign. Five missense changes were predicted as VUS and selected for association study. The COL5A1 c.1595 C>T (p.Ala532Val) was detected in one out of 345 cases and three out of 1035 controls (P=1, OR=1); this indicates that the variant is a neutral alteration. Four remaining variants – c.2840 C>A, c.5395 G>A, c.1331 C>G, c.1590 C>A – were present in none out of the 345 CTS patients and none out of 1035 controls. Conclusion. The main finding of this study was that there was no independent association between the variants of five examined genes and carpal tunnel syndrome. Four uncertain variants were identified that seem to be extremely rare in the Polish population.
Zusammenfassung
Die Pathogenese der meisten Fälle von Karpaltunnelsyndrom ist nicht eindeutig bestimmt. Es gibt einige Aspekte der Krankheit, die auf die mögliche Wirkung genetischer Veranlagungen hindeuten. Mutationen (Varianten) innerhalb der Gene, die für verschiedene Subtypen der Kollagensynthese, die Oligomerisierung im endoplasmatischen Retikulum und die Inaktivierung reaktiver Sauerstoffspezies kodieren, können an der Entwicklung des Karpaltunnelsyndroms beteiligt sein. Das Ziel dieser Studie war es, die Rolle von DNA-Veränderungen in den Genen COL11A, COL1A, COL5A1, COMP und GSTM1 bei der Pathogenese des Karpaltunnelsyndroms anhand einer polnischen Population zu bestimmen. Studiendesign. In der Entdeckungsphase wurden insgesamt 96 Patienten mit familiärer Aggregation von CTS mit einem Next Generation Sequencing-Panel genotypisiert, um mögliche Mutationen innerhalb der untersuchten Gene zu finden. Die potenzielle Pathogenität der detektierten Varianten wurde mit Hilfe der Vorhersagen mehrerer In-silico-Algorithmen und des TaqMan untersucht. In der Assoziationsphase der Studie wurde eine Gruppe von 345 CTS-Patienten und 1035 gesunden Kontrollpersonen genotypisiert. Befund. Insgesamt wurden 35 Spleißstellen- oder exonische nicht-synonyme Varianten durch NGS nachgewiesen. Wir identifizierten keine eindeutig pathogenen oder wahrscheinlichen pathogenen Veränderungen. Die 30 Varianten wurden als gutartig oder wahrscheinlich gutartig identifiziert. Fünf Missense-Veränderungen wurden als VUS vorhergesagt und für die Assoziationsstudie ausgewählt. Das COL5A1 c.1595 C>T (p.Ala532Val) wurde in einem von 345 Fällen und drei von 1035 Kontrollen (P=1, OR=1) nachgewiesen und weist auf eine neutrale Veränderung hin. Vier verbleibende Varianten: c.2840 C>A, c.5395 G>A, c.1331 C>G, c.1590 C>A waren bei keinem der 345 CTS-Patienten und keiner von 1035 Kontrollen vorhanden. Schlussfolgerung. Das Hauptergebnis dieser Studie war, dass es keinen unabhängigen Zusammenhang zwischen den Varianten von fünf untersuchten Genen und dem Karpaltunnelsyndrom gab. Es wurden vier unsichere Varianten identifiziert, die in der polnischen Bevölkerung äußerst selten zu sein scheinen.
Keywords
carpal tunnel syndrome aetiology - genetic predispositions - COL genes - COMP genes - GSTM1 genesSchlüsselwörter
Karpaltunnelsyndrom Ätiologie - genetische Veranlagungen - COL-Gene - COMP-Gene - GSTM1-GenePublication History
Received: 13 January 2024
Accepted: 19 July 2024
Article published online:
27 September 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Bland JD. Carpal tunnel syndrome. BMJ 2007; 335: 343-346
- 2 Padua L. et al. Carpal tunnel syndrome: clinical features, diagnosis, and management. Lancet Neurol 2016; 15: 1273-1284
- 3 Puchalski P, Zyluk A, Szlosser Z. et al. Factors involving the clinical profile of carpal tunnel syndrome. Handchir Mikrochir Plast Chir 2018; 50: 8-13
- 4 Gossett JG, Chance PF. Is there a familial carpal tunnel syndrome? An evaluation and literature review. Muscle Nerve 1998; 21: 1533-1536
- 5 Elstner M. et al. Familial carpal tunnel syndrome: further evidence for a genetic contribution. Clin. Genet. 2006 69. 179-182 2006
- 6 Puchalski P, Szlosser Z, Zyluk A. Familial occurrence of carpal tunnel syndrome. Neurol Neurochir Pol. 2019 53. 105603/PJNNS.a2019.0004.
- 7 Zyluk A. The role of genetic factors in carpal tunnel syndrome etiology: A review. Adv Clin Exp Med 2020; 29: 623-628
- 8 Dada S, Burger MC, Massij F. et al. Carpal tunnel syndrome: The role of collagen gene variants. Gene 2016; 587: 53-58
- 9 Burger M, de Wet H, Collins M. The COL5A1 gene is associated with increased risk of carpal tunnel syndrome. Clin Rheumatol 2014; 34: 767-774
- 10 Ficek K, Cieszyk O, Kaczmarczyk M. et al. Gene variants within the COL1A1 gene are associated with reduced ACL injury in professional soccer players. J Sci Med Sport 2013; 16: 396-400
- 11 Li C, Wang N, Schäffer AA. et al. Mutations in COMP cause familial carpal tunnel syndrome. Nat Commun 2020; 11: 3642
- 12 Board PG, Menon D. Glutatione transferases, regulator of cellular metabolism and physiology. Biochem Biophys Acta 2013; 1830: 3267-3288
- 13 Kim JK, Koh YD, Hann HJ. et al. Oxidative stress in sub-synovial connective tissue of idiopathic carpal tunnel syndrome. J Orthop Res 2010; 28: 1463-1468
- 14 Eroğlu P, Erkol İnal E, Sağ ŞÖ. et al. Associations analysis of GSTM1, T1 and P1 Ile105Val polymorphisms with carpal tunnel syndrome. Clin Rheumatol 2016; 35: 1245-1251
- 15 Sokolenko AP, Imyanitov EN. Molecular diagnostics in clinical oncology. Front Mol Biosci 2018; 5
- 16 Stanislaw C, Xue Y, Wilcox WR. Genetic evaluation and testing for hereditary forms of cancer in the era of next-generation sequencing. Cancer Biol Med 2016; 13: 55-67
- 17 Lahiri DK, Schnabel B. DNA isolation by a rapid method from human blood samples: effects of MgCl2, EDTA, storage time, and temperature on DNA yield and quality. Biochem Genet 1993; 31: 321-328
- 18 Landrum MJ, Lee JM, Riley GR. et al ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 2014; 42 (Database issue) D980-D985
- 19 Kopanos C, Tsiolkas C, Kouris A. et al. VarSome: the human genomic variant search engine. Bioinformatics 2019; 35: 1978-1980
- 20 Sherry ST, Ward MH, Kholodov M. et al. DbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001; 29: 308-311
- 21 Richards S, Aziz N, Bale S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17: 405-424
- 22 Liu X, Jian X, Boerwinkle E. DbNSFP: A lightweight database of human nonsynonymous SNPs and their functional predictions. Human Mutation 2011; 32: 894-899
- 23 Eddy SR. Where did the BLOSUM62 alignment score matrix come from?. Nat Biotechnol 2004; 22: 1035-1036
- 24 Quang D, Chen Y, Xie X. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 2015; 31: 761-763
- 25 Raimondi D, Tanyalcin I, Ferté J. et al. DEOGEN2: prediction and interactive visualization of single amino acid variant deleteriousness in human proteins. Nucleic Acids Res 2017; 45: W201-W206
- 26 Ionita-Laza I, McCallum K, Xu B. et al. A spectral approach integrating functional genomic annotations for coding and noncoding variants. Nat Genet 2016; 48: 214-220
- 27 Shihab HA, Gough J, Cooper DN. et al. Predicting the functional consequences of cancer-associated amino acid substitutions Bioinformatics. 2013; 29: 1504-1510
- 28 Shihab HA, Rogers MF, Gough M. et al. An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics 2015; 31: 1536-1543
- 29 Rogers MF, Shihab HA, Mort M. et al. FATHMM-XF: accurate prediction of pathogenic point mutations via extended features. Bioinformatics 2018; 34: 511-513
- 30 Malhis N, Jacobson M, Jones SJ. et al. LIST-S2: taxonomy based sorting of deleterious missense mutations across species. Nucleic Acids Res 2020; 48: W154-W161
- 31 Chun S, Fay JC. Fay Identification of deleterious mutations within three human genomes. Genome Res 2009; 19: 1553-1561
- 32 Jagadeesh KA, Wenger AM, Berger MJ. et al. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. Nat Genet 2016; 48: 1581-1586
- 33 Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res 2011; 39: 345-348
- 34 Schwarz J, Cooper D, Schuelke M. et al. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 2014; 11: 361-362
- 35 Qi H, Zhang H, Zhao Y. et al. MVP predicts the pathogenicity of missense variants by deep learning. Nat Commun 2021; 12: 510
- 36 Choi Y, Sims GE, Murphy S. et al. Predicting the functional effect of amino acid substitutions and indels. PLoS One 2012; 7: e466
- 37 Vaser R, Adusumalli S, Leng SN. et al. SIFT missense predictions for genomes. Nat Protocols 2016; 11: 1-9
- 38 Dec P, Zyluk A. Bilateral carpal tunnel syndrome: a review. Neurol Neurochir Pol 2018; 52: 79-83
- 39 Wiberg A. et al. A genome-wide association analysis identifies 16 novel susceptibility loci for carpal tunnel syndrome. Nat Commun 2019; 10: 1030
- 40 Hakim AJ, Cherkas L, El Zayat S. et al. The genetic contribution to carpal tunnel syndrome in women: a twin study. Arthritis Rheum 2002; 47: 275-279
- 41 Skuladottir ATH, Bjornsdottir G, Ferkingstad E. et al. A genome-wide meta-analysis identifies 50 genetic loci associated with carpal tunnel syndrome. Nat Commun 2022; 13: 1598