Planta Med 2024; 90(12): 900-937
DOI: 10.1055/a-2369-8104
Biological and Pharmacological Activity
Reviews

Anti-inflammatory Principles of the Plant Family Amaryllidaceae

Jerald J. Nair
Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
,
Johannes van Staden
Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
› Institutsangaben
The University of KwaZulu-Natal has over many years made significant contributions towards the research of the authors.

Abstract

There is considerable interest in the utilisation of plants against inflammation. Over 50 species of the plant family Amaryllidaceae are known for such usage in traditional medicine. This review was undertaken to identify the chemical principles responsible for these anti-inflammatory effects. It describes the findings from in vitro, in vivo and in silico studies, as well as the probes made on the mechanisms of action. The literature search returned over 600 hits, of which around 130 were chosen for their relevance to the text. Over 140 compounds have thus far been screened for anti-inflammatory effects. These were mostly isoquinoline alkaloids but also included other classes of secondary metabolites such as chromones, flavonoids and triterpenoids. In vitro studies were carried out in mononuclear cells such as lymphocytes, monocytes, neutrophils and macrophages, against which no serious side effects were observed. The constituents were also effective against inflammation induced by physical and chemical stimuli in a variety of murine test subjects. Chief among the compounds were the isoquinoline alkaloids lycorine and narciclasine, which displayed potent effects against pain, swelling, asthma and arthritis, amongst others. From a mechanistic perspective, several of the compounds were shown to mediate in inflammatory pathways, notably via the modulation of both pro-inflammatory (such as NF-κB, TNF-α and IL-1) and anti-inflammatory (such as IL-10 and TGF-β) factors. Useful insights also emerged from active-site docking studies of some of the compounds. The Amaryllidaceae affords a rich and diverse platform for the discovery of potential anti-inflammatory drugs.



Publikationsverlauf

Eingereicht: 23. Mai 2024

Angenommen nach Revision: 19. Juli 2024

Accepted Manuscript online:
19. Juli 2024

Artikel online veröffentlicht:
14. August 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Rahman I, Bagghi D. Inflammation, Advancing Age and Nutrition. London: Elsevier; 2014: 2-11
  • 2 Cavaillon JM, Singer M. Inflammation: From Molecular and Cellular Mechanisms to the Clinic. Weinheim: Wiley-VCH; 2017: 17-38
  • 3 Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018; 9: 7204-7721
  • 4 Ashley NT, Weil ZM, Nelson RJ. Inflammation: Mechanisms, costs and natural variation. Annu Rev Ecol Evol Syst 2012; 43: 385-406
  • 5 Vasey C. Natural Remedies for Inflammation. Rochester: Healing Arts Press; 2014: 97-134
  • 6 Latruffe N. Natural products and inflammation. Molecules 2017; 22: 120
  • 7 Nair JJ, van Staden J. Anti-inflammatory effects of the plant family Amaryllidaceae. J Ethnopharmacol 2024; 327: 117943
  • 8 Raja SN, Carr DB, Cohen M, Finnerup NB, Flor H, Gibson S, Keefe FJ, Mogil JS, Ringkamp M, Sluka KA, Song XJ, Stevens B, Sullivan MD, Tutelman PR, Ushida T, Vader K. The revised international association for the study of pain definition of pain: concepts, challenges, and compromises. Pain 2020; 161: 1976-1982
  • 9 Tanker M, Citoglu G, Gumusel B, Sener B. Alkaloids of Sternbergia clusiana and their analgesic effects. Int J Pharmacogn 1996; 34: 194-197
  • 10 Citoglu GS, Acikara OB, Yilmaz BS, Ozbek H. Evaluation of analgesic, anti-inflammatory and hepatoprotective effects of lycorine from Sternbergia fisheriana (Herbert) Rupr. Fitoterapia 2012; 83: 81-87
  • 11 Little RC, Ginsburg JM. The physiologic basis for clinical edema. Arch Intern Med 1984; 144: 1661-1664
  • 12 Citoglu G, Tanker M, Gumusel B. Anti-inflammatory effects of lycorine and haemanthidine. Phytother Res 1998; 12: 205-206
  • 13 Lubahn C, Schaller JA, Shewmacker E, Wood C, Bellinger DL, Byron D, Melody N, Pettit GR, Lorton D. Preclinical efficacy of sodium narcistatin to reduce inflammation and joint destruction in rats with adjuvant-induced arthritis. Rheumatol Int 2012; 32: 3751-3760
  • 14 Rai U, Rawal A, Singh S. Evaluation of the anti-inflammatory effect of an anti-platelet agent crinumin on carrageenan-induced paw oedema and granuloma tissue formation in rats. Inflammopharmacology 2018; 26: 769-778
  • 15 Basketter DA. Chemistry of contact allergens and irritants. Am J Contact Dermat 1998; 9: 119-124
  • 16 Pavlov VA, Parrish WR, Rosas-Ballina M, Ochani M, Puerta M, Ochani K, Chavan S, Al-Abed Y, Tracey KJ. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav Immun 2009; 23: 41-45
  • 17 Amitai G, Adani R, Fishbein E, Meshulam H, Laish I, Dachir S. Bifunctional compounds eliciting anti‐inflammatory and anticholinesterase activity as potential treatment of nerve and blister chemical agents poisoning. J Appl Toxicol 2006; 26: 81-87
  • 18 Young SC, Fabio KM, Huang MT, Saxena J, Harman MP, Guillon CD, Vetrano AM, Heck DE, Flowers 2nd RA, Heindel ND, Laskin JD. Investigation of anticholinergic and non‐steroidal anti‐inflammatory prodrugs which reduce chemically induced skin inflammation. J Appl Toxicol 2012; 32: 135-141
  • 19 Centres for Disease Control and Prevention. Chronic disease fact sheets. Accessed October 31 2023 at: https://www.cdc.gov/chronicdisease/resources/publications/factsheets/arthritis.htm/
  • 20 Mikami M, Kitahara M, Kitano M, Ariki Y, Mimaki Y, Sashida Y, Yamazaki M, Yui S. Suppressive activity of lycoricidinol (narciclasine) against cytotoxicity of neutrophil-derived calprotectin, and its suppressive effect on rat adjuvant arthritis model. Biol Pharm Bull 1999; 22: 674-678
  • 21 Chen S, Fang XQ, Zhang JF, Ma Y, Tang XZ, Zhou ZJ, Wang JY, Qin A, Fan SW. Lycorine protects cartilage through suppressing the expression of matrix metalloproteinases in rat chondrocytes and in a mouse osteoarthritis model. Mol Med Rep 2016; 14: 3389-3396
  • 22 Lee AS, Ellman MB, Yan D, Kroin JS, Cole BJ, van Wijnen AJ, Im HJ. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 2013; 527: 440-447
  • 23 Hu YD, Yue YF, Chen T, Wang ZD, Ding JQ, Xie M, Li D, Zhu HL, Cheng ML. Alleviating effect of lycorine on CFA-induced arthritic pain via inhibition of spinal inflammation and oxidative stress. Exp Ther Med 2023; 25: 241
  • 24 Yao S, Deng M, Du X, Huang R, Chen Q. A novel hypoxia related marker in blood link to aid diagnosis and therapy in osteoarthritis. Genes (Basel) 2022; 13: 1501
  • 25 Duan Q, Jia Y, Qin Y, Jin Y, Hu H, Chen J. Narciclasine attenuates LPS-induced acute lung injury in neonatal rats through suppressing inflammation and oxidative stress. Bioengineered 2020; 11: 801-810
  • 26 De Oliveira PG, Pedrazza GPR, Farinon M, Xavier RM, Zuanazzi JAS, Spies F. Method for extracting the alkaloid fraction of Rhodophiala bifida (Herb.) Traub and uses thereof. European Patent Application WO 2014/124511, 2014
  • 27 Farinon M, Clarimundo VS, Pedrazza GPR, Gulko PS, Zuanazzi JAS, Xavier RM, de Oliveira PG. Disease modifying anti-rheumatic activity of the alkaloid montanine on experimental arthritis and fibroblast-like synoviocytes. Eur J Pharmacol 2017; 799: 180-187
  • 28 Hanauer SB. Inflammatory bowel disease: Epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis 2006; 12: 3-9
  • 29 Mahdavi NS, Talebi A, Minaiyan M. Ameliorative effect of galanthamine on acetic acid-induced colitis in rats. Res Pharm Sci 2019; 14: 391-399
  • 30 Malangoni MA, Inui T. Peritonitis – the western experience. World J Emerg Surg 2006; 1: 25
  • 31 Stark A, Schwenk R, Wack G, Zuchtriegel G, Hatemler MG, Brautigam J, Schmidtko A, Reichel CA, Bischoff I, Fürst R. Narciclasine exerts anti-inflammatory actions by blocking leukocyte-endothelial cell interactions and down-regulation of the endothelial TNF receptor 1. FASEB J 2019; 33: 8771-8781
  • 32 Mayr FB, Yende S, Angus DC. Epidemiology of severe sepsis. Virulence 2014; 5: 4-11
  • 33 Kingsley MK, Bhat BV, Badhe BA, Dhas BB, Parija SC. Narciclasine improves outcome in sepsis among neonatal rats via inhibition of calprotectin and alleviating inflammatory responses. Sci Rep 2020; 10: 2947
  • 34 Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med 2003; 348: 138-150
  • 35 Tang R, Jia L, Li Y, Zheng J, Qi P. Narciclasine attenuates sepsis-induced myocardial injury by modulating autophagy. Aging 2021; 13: 15151-15163
  • 36 Wu J, Fu Y, Wu YX, Wu ZX, Wang ZH, Li P. Lycorine ameliorates isoproterenol-induced cardiac dysfunction mainly via inhibiting inflammation, fibrosis, oxidative stress and apoptosis. Bioengineered 2021; 12: 5583-5594
  • 37 Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome. N Engl J Med 2017; 377: 562-572
  • 38 Ge X, Meng X, Fei D, Kang K, Wang Q, Zhao M. Lycorine attenuates lipopolysaccharide-induced acute lung injury through the HMGB1/TLRs/NF-κB pathway. 3 Biotech 2020; 10: 369
  • 39 Tian Y, Wang J, Qin X, Li S, Lan C, Sun X. Narciclasine ameliorated T cell mediated acute liver injury through activating AMPK pathway. Cell Immunol 2022; 382: 104631
  • 40 Maruotti N, Grano M, Colucci S, dʼOnofrio F, Cantatore FP. Osteoclastogenesis and arthritis. Clin Exp Med 2011; 11: 137-145
  • 41 Chen S, Jin G, Huang KM, Ma JJ, Wang Q, Ma Y, Tang XZ, Zhou ZJ, Hu ZJ, Wang JY, Qin A, Fan SW. Lycorine suppresses RANKL-induced osteoclastogenesis in vitro and prevents ovariectomy-induced osteoporosis and titanium particle-induced osteolysis in vivo . Sci Rep 2015; 5: 12853
  • 42 Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocr Rev 2008; 29: 403-440
  • 43 Park HJ, Gholam-Zadeh M, Suh JH, Choi HS. Lycorine attenuates autophagy in osteoclasts via an axis of mROS/TRPML1/TFEB to reduce LPS-induced bone loss. Oxid Med Cell Longev 2019; 8982147
  • 44 Wynn TA. Fibrotic disease and the TH 1/TH 2 paradigm. Nat Rev Immunol 2004; 4: 583-594
  • 45 Alkreathy HM, Esmat A. Lycorine ameliorates thioacetamide-induced hepatic fibrosis in rats: Emphasis on antioxidant, anti-inflammatory, and STAT3 inhibition effects. Pharmaceuticals 2022; 15: 369
  • 46 Quirt J, Hildebrand KJ, Mazza J, Noya F, Kim H. Asthma. Allergy Asthma Clin Immunol 2018; 14: 50
  • 47 Peng G, Cao C, Long X. Narciclasine modulates matrix remodeling in asthmatic neonatal rats by regulating inflammatory pathway. Curr Top Nutraceutical Res 2022; 20: 340-345
  • 48 Condamine T, Gabrilovich DI. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 2011; 32: 19-25
  • 49 Zhang G, Zhu X, Yang F, Li J, Leng X, Mo C, Li L, Wang Y. Pseudolycorine chloride ameliorates Th17 cell-mediated central nervous system autoimmunity by restraining myeloid-derived suppressor cell expansion. Pharm Biol 2022; 60: 899-908
  • 50 Hao Y, Zhu YJ, Zou S, Zhou P, Hu YW, Zhao QX, Gu LN, Zhang HZ, Wang Z, Li J. Metabolic syndrome and psoriasis: Mechanisms and future directions. Front Immunol 2021; 12: 711060
  • 51 Kong Y, Jiang J, Huang Y, Liu X, Jin Z, Li L, Wei F, Liu X, Yin J, Zhang Y, Tong Q, Chen H. Narciclasine inhibits phospholipase A2 and regulates phospholipid metabolism to ameliorate psoriasis-like dermatitis. Front Immunol 2023; 13: 1094375
  • 52 Willcox JK, Ash SL, Catignani GL. Antioxidants and prevention of chronic disease. Crit Rev Food Sci Nutr 2004; 44: 275-295
  • 53 Amarowicz R, Pegg RB. Natural antioxidants of plant origin. Adv Food Nutr Res 2019; 90: 1-81
  • 54 Castilhos TS, Giordani RB, Henriques AT, Menezes FS, Zuanazzi JAS. In vitro evaluation of the antioxidant, anti-inflammatory and antimicrobial activities of the montanine alkaloid. Rev Bras Farmacogn 2007; 17: 209-214
  • 55 Oloyede KG, Oke MJ, Raji Y, Olugbade AT. Antioxidant and anticonvulsant alkaloids in Crinum ornatum bulb extract. World J Chem 2010; 5: 26-31
  • 56 Ilavenil S, Kaleeswaran B, Sumitha P, Tamilvendan D, Ravikumar S. Protection of human erythrocyte using Crinum asiaticum extract and lycorine from oxidative damage induced by 2-amidinopropane. Saudi J Biol Sci 2011; 18: 181-187
  • 57 Yamazaki Y, Kawano Y. Inhibitory effects of herbal alkaloids on the tumor necrosis factor-α and nitric oxide production in lipopolysaccharide-stimulated RAW264 macrophages. Chem Pharm Bull 2011; 59: 388-391
  • 58 Park JB. Synthesis and characterization of norbelladine, a precursor of Amaryllidaceae alkaloid, as an anti-inflammatory/anti-COX compound. Bioorg Med Chem Lett 2014; 24: 5381-5384
  • 59 Chen MX, Huo JM, Hu J, Xu ZP, Zhang X. Amaryllidaceae alkaloids from Crinum latifolium with cytotoxic, antimicrobial, antioxidant, and anti-inflammatory activities. Fitoterapia 2018; 130: 48-53
  • 60 Ilavenil S, Kaleeswaran B, Ravikumar S. Protective effects of lycorine against carbon tetrachloride induced hepatotoxicity in Swiss albino mice. Fundam Clin Pharmacol 2012; 26: 393-401
  • 61 Ilavenil S, Karthik D, Arasu MV, Vijayakumar M, Srigopalram S, Arokiyaraj S, Ravikumar S, Choi KC. Hepatoprotective mechanism of lycorine against carbon tetrachloride induced toxicity in Swiss albino mice – a proteomic approach. Asian Pac J Reprod 2015; 4: 123-128
  • 62 Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol 2007; 35: 495-516
  • 63 Griffin C, McNulty J, Pandey S. Pancratistatin induces apoptosis and autophagy in metastatic prostate cancer cells. Int J Oncol 2011; 38: 1549-1556
  • 64 Tsvetkova D, Obreshkova D, Zheleva-Dimitrova D, Saso L. Antioxidant activity of galanthamine and some of its derivatives. Curr Med Chem 2013; 20: 4595-4608
  • 65 Traykova M, Traykov T, Hadjimitova V, Krikorian K, Bojadgieva N. Antioxidant properties of galanthamine hydrobromide. Z Naturforsch C 2003; 58: 361-365
  • 66 Xin L, Yamujala R, Wang Y, Wang H, Wu WH, Lawton MA, Long C, Di R. Acetylcholineestarase-inhibiting alkaloids from Lycoris radiata delay paralysis of amyloid beta-expressing transgenic C. elegans CL4176. PLoS One 2013; 8: e63874
  • 67 Zhu YY, Li X, Yu HY, Xiong YF, Zhang P, Pi HF, Ruan HL. Alkaloids from the bulbs of Lycoris longituba and their neuroprotective and acetylcholinesterase inhibitory activities. Arch Pharm Res 2015; 38: 604-613
  • 68 Ali MA, El-Abhar HS, Kamel MA, Attia AS. Antidiabetic effect of galanthamine: Novel effect for a known centrally acting drug. PLoS One 2015; 10: e0134648
  • 69 Sammi SR, Rawat JK, Raghav N, Kumar A, Roy S, Singh M, Gautam S, Yadav RK, Devi U, Pandey R, Kaithwas G. Galanthamine attenuates N,N-dimethyl hydrazine induced neoplastic colon damage by inhibiting acetylcholinesterase and bimodal regulation of nicotinic cholinergic neurotransmission. Eur J Pharmacol 2018; 818: 174-183
  • 70 Mahlangeni NT, Moodley R, Jonnalagadda SB. Phytochemical analysis of Cyrtanthus obliquus bulbs from the informal street market of Kwazulu-Natal, South Africa. Afr J Tradit Complement Altern Med 2015; 12: 28-34
  • 71 Sen P, Kemppainen E, Oresic M. Perspectives on systems modeling of human peripheral blood mononuclear cells. Front Mol Biosci 2018; 4: 96/1-96/11
  • 72 Ghosal S, Lochan R, Ashutosh. Kumar Y, Srivastava RS. Alkaloids of Haemanthus kalbreyeri . Phytochemistry 1985; 24: 1825-1828
  • 73 Boyden S. The chemotatic effect of mixtures of antibody and antigen on polymorphonuclear leukocytes. J Exp Med 1962; 15: 453-466
  • 74 Fitzpatrick FA. Cyclooxygenase enzymes: Regulation and function. Curr Pharm Des 2004; 10: 577-588
  • 75 Elgorashi EE, Zschocke S, van Staden J. The anti-inflammatory and antibacterial activities of Amaryllidaceae alkaloids. S Afr J Bot 2003; 69: 448-449
  • 76 Kang J, Zhang Y, Cao X, Fan J, Li G, Wang Q, Diao Y, Zhao Z, Luo L, Yin Z. Lycorine inhibits lipopolysaccharide-induced iNOS and COX-2 up-regulation in RAW264.7 cells through suppressing P38 and STATs activation and increases the survival rate of mice after LPS challenge. Int Immunopharmacol 2012; 12: 249-256
  • 77 Shen CY, Xu XL, Yang LJ, Jiang JG. Identification of narciclasine from Lycoris radiata (LʼHer.) Herb. and its inhibitory effect on LPS-induced inflammatory responses in macrophages. Food Chem Toxicol 2019; 125: 605-613
  • 78 Zhao D, Zhang LJ, Huang TQ, Kim J, Gu MY, Yang HO. Narciclasine inhibits LPS-induced neuroinflammation by modulating the Akt/IKK/NF-κB and JNK signaling pathways. Phytomedicine 2021; 85: 153540
  • 79 Zhao D, Gu MY, Zhang LJ, Jeon HJ, Cho YB, Yang HO. 7-Deoxy-trans-dihydronarciclasine isolated from Lycoris chejuensis inhibits neuroinflammation in experimental models. J Agric Food Chem 2019; 67: 9796-9804
  • 80 Song JH, Zhang L, Song Y. Alkaloids from Lycoris aurea and their cytotoxicities against the head and neck squamous cell carcinoma. Fitoterapia 2014; 95: 121-126
  • 81 Liu ZM, Huang XY, Cui MR, Zhang XD, Chen Z, Yang BS, Zhao XK. Amaryllidaceae alkaloids from the bulbs of Lycoris radiata with cytotoxic and anti-inflammatory activities. Fitoterapia 2015; 101: 188-193
  • 82 Wang HY, Qu SM, Wang Y, Wang HT. Cytotoxic and anti-inflammatory active plicamine alkaloids from Zephyranthes grandiflora . Fitoterapia 2018; 130: 163-168
  • 83 Elgorashi EE, Coombes PH, Mulholland DA, van Staden J. Isoeugenitol, a cyclooxygenase-1 inhibitor from Gethyllis ciliaris . S Afr J Bot 2007; 73: 156-158
  • 84 Silva CFM, Pinto DCGA, Silva AMS. Chromones: a promising ring system for new anti-inflammatory drugs. ChemMedChem 2016; 11: 2252-2260
  • 85 Mashima R, Okuyama T. The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biol 2015; 6: 297-310
  • 86 Smith WL, Urade Y, Jakobsson PJ. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev 2011; 111: 5821-5865
  • 87 Kongkwamcharoen C, Itharat A, Pipatrattanaseree W, Ooraikul B. Effects of various pre-extraction treatments of Crinum asiaticum leaf on its anti-inflammatory activity and chemical properties. Evid Based Complement Alternat Med 2021; 8850744
  • 88 Khoi NM, Dat NT, Na MK, Thuong PT, Min BS, Bae KH. Cytotoxic activity of parthenin, a sesquiterpene isolated from Crinum ensifolium . Nat Prod Sci 2011; 17: 100-103
  • 89 Hayden MS, Ghosh S. Regulation of NF-κB by TNF family cytokines. Semin Immunol 2014; 26: 253-266
  • 90 Pearlman DS. Pathophysiology of the inflammatory response. J Allergy Clin Immunol 1999; 104: 132-137
  • 91 Do KM, Shin MK, Kodama T, Win NN, Prema P, Nguyen HM, Hayakawa Y, Morita H. Flavanols and flavanes from Crinum asiaticum and their effects on LPS signaling pathway through the inhibition of NF-κB activation. Planta Med 2022; 88: 913-920
  • 92 Morrison DK. MAP kinase pathways. Cold Spring Harb Perspect Biol 2012; 4: a011254
  • 93 Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57-70
  • 94 Yui S, Mikami M, Mimaki Y, Sashida Y, Yamazaki M. Inhibition effect of amaryllidaceae alkaloids, lycorine and lycoricidinol on macrophage TNF-α production. Yakugaku Zasshi 2001; 121: 167-171
  • 95 Kim YS, Joh TH. Microglia, major player in the brain inflammation: Their roles in the pathogenesis of Parkinsonʼs disease. Exp Mol Med 2006; 38: 333-347
  • 96 Madge LA, Pober JS. TNF signaling in vascular endothelial cells. Exp Mol Pathol 2001; 70: 317-325
  • 97 Fuchs S, Hsieh LT, Saarberg W, Erdelmeier CAJ, Wichelhaus TA, Schaefer L, Koch E, Fürst R. Haemanthus coccineus extract and its main bioactive component narciclasine display profound anti-inflammatory activities in vitro and in vivo . J Cell Mol Med 2015; 19: 1021-1032
  • 98 Fürst R. Narciclasine – an amaryllidaceae alkaloid with potent antitumor and anti-inflammatory properties. Planta Med 2016; 82: 1389-1394
  • 99 Rarova L, Ncube B, van Staden J, Fürst R, Strnad M, Gruz J. Identification of narciclasine as an in vitro anti-inflammatory component of Cyrtanthus contractus by correlation-based metabolomics. J Nat Prod 2019; 82: 1372-1376
  • 100 Ley K. The role of selectins in inflammation and disease. Trends Mol Med 2003; 9: 263-268
  • 101 Tracey KJ. The inflammatory reflex. Nature 2002; 420: 853-859
  • 102 Tracey KJ. Physiology and immunology of the cholinergic anti-inflammatory pathway. J Clin Invest 2007; 117: 289-296
  • 103 Heinrich M, Teoh HL. Galanthamine from snowdrop – the development of a modern drug against Alzheimerʼs disease from local Caucasian knowledge. J Ethnopharmacol 2004; 92: 147-162
  • 104 Pavlov VA, Tracey KJ. The cholinergic anti-inflammatory pathway. Brain Behav Immun 2005; 19: 493-499
  • 105 Todd I, Negm OH, Reps J, Radford P, Figueredo G, McDermott EM, Drewe E, Powell RJ, Bainbridge S, Hamed M, Crouch S, Garibaldi J, St-Gallay S, Fairclough LC, Tigh PJ. A signalome screening approach in the autoinflammatory disease TNF receptor associated periodic syndrome (TRAPS) highlights the anti-inflammatory properties of drugs for repurposing. Pharmacol Res 2017; 125: 188-200
  • 106 Brocker C, Thompson D, Matsumoto A, Nebert DW, Vasiliou V. Evolutionary divergence and functions of the human interleukin (IL) gene family. Hum Genomics 2010; 5: 30-55
  • 107 Mathieu V, Laguera B, Masi M, Dulanto SA, Bingham TW, Hernandez LW, Sarlah D, Evidente A, Lafontaine DLJ, Kornienko A, Lane MA. Amaryllidaceae alkaloids decrease the proliferation, invasion, and secretion of clinically relevant cytokines by cultured human colon cancer cells. Biomolecules 2022; 12: 1267
  • 108 Sinha M, Singh A, Shokeen A, Sharma P, Kaushik S, Mitra DK, Kaur P, Sharma S, Singh TP. Evidence of a novel allergenic protein narcin in the bulbs of Narcissus tazetta . Int J Biochem Mol Biol 2013; 4: 95-101
  • 109 Kopitar-Jerala N. The role of interferons in inflammation and inflammasome activation. Front Immunol 2017; 8: 873
  • 110 De Zoete MR, Palm NW, Zhu S, Flavell RA. Inflammasomes. Cold Spring Harb Perspect Biol 2014; 6: a016287
  • 111 Liang Q, Cai W, Zhao Y, Xu H, Tang H, Chen D, Qian F, Sun L. Lycorine ameliorates bleomycin-induced pulmonary fibrosis via inhibiting NLRP3 inflammasome activation and pyroptosis. Pharm Res 2020; 158: 104884
  • 112 Xu W, Liu LZ, Loizidou M, Ahmed M, Charles IG. The role of nitric oxide in cancer. Cell Res 2002; 12: 311-320
  • 113 Abdel-Halim OB, Morikawa T, Ando S, Matsuda H, Yoshikawa M. New crinine-type alkaloids with inhibitory effect on induction of inducible nitric oxide synthase from Crinum yemense . J Nat Prod 2004; 67: 1119-1124
  • 114 Brautigam J, Bischoff I, Schürmann C, Buchmann G, Epah J, Fuchs S, Heiss E, Brandes RP, Fürst R. Narciclasine inhibits angiogenic processes by activation of Rho kinase and by down-regulation of the VEGF receptor 2. J Mol Cell Cardiol 2019; 135: 97-108
  • 115 Zhan G, Zhou J, Liu R, Liu T, Guo G, Wang J, Xiang M, Xue Y, Luo Z, Zhang Y, Yao G. Galanthamine, plicamine, and secoplicamine alkaloids from Zephyranthes candida and their anti-acetylcholinesterase and anti-inflammatory activities. J Nat Prod 2016; 79: 760-766
  • 116 Zhan G, Gao B, Zhou J, Liu T, Zheng G, Jin Z, Yao G. Structurally diverse alkaloids with nine frameworks from Zephyranthes candida and their acetylcholinesterase inhibitory and anti-inflammatory activities. Phytochemistry 2023; 207: 113564
  • 117 Zhan G, Zhou J, Liu T, Zheng G, Aisa HA, Yao G. Flavans with potential anti-inflammatory activities from Zephyranthes candida . Bioorg Med Chem Lett 2016; 26: 5967-5970
  • 118 Hoffmann-Sommergruber K. Plant allergens and pathogenesis-related proteins. What do they have in common?. Int Arch Allergy Immunol 2000; 122: 155-166
  • 119 Yui S, Nakatani Y, Mikami M. Calprotectin (S100A8/S100A9), an inflammatory protein complex from neutrophils with a broad apoptosis-inducing activity. Biol Pharm Bull 2003; 26: 753-760
  • 120 Yui S, Mikami M, Kitahara M, Yamazaki M. The inhibitory effect of lycorine on tumor cell apoptosis induced by polymorphonuclear leukocyte-derived calprotectin. Immunopharmacology 1998; 40: 151-162
  • 121 Galvez-Llompart M, Zanni R, Garcia-Domenech R. Modeling natural anti-inflammatory compounds by molecular topology. Int J Mol Sci 2011; 12: 9481-9503
  • 122 Haeggström JZ, Funk CD. Lipoxygenase and leukotriene pathways: Biochemistry, biology, and roles in disease. Chem Rev 2011; 111: 5866-5898
  • 123 Singh S, Awasthi M, Pandey VP, Dwivedi UN. Lipoxygenase directed anti-inflammatory and anti-cancerous secondary metabolites: ADMET-based screening, molecular docking and dynamics simulation. J Biomol Struct Dyn 2017; 35: 657-668
  • 124 Cortes N, Castaneda C, Osorio EH, Cardona-Gomez GP, Osorio E. Amaryllidaceae alkaloids as agents with protective effects against oxidative neural cell injury. Life Sci 2018; 203: 54-65
  • 125 Umar HI, Saliu TP, Josiah SS, Ajayi A, Danjuma JB. In silico studies of bioactive compounds from selected African plants with inhibitory activity against nitric oxide synthase and arginase implicated in asthma. Egypt J Med Hum Genet 2021; 22: 60
  • 126 Boshra YR, Mostafa YA, Hamed ANE, Desoukey SY, Fahim JR. Wound healing potential of Narcissus pseudonarcissus L. bulbs supported with chemical and molecular docking investigations. S Afr J Bot 2023; 157: 490-501
  • 127 OʼKane S, Ferguson MW. Transforming growth factor βs and wound healing. Int J Biochem Cell Biol 1997; 29: 63-78
  • 128 Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK-3): regulation, actions, and diseases. Pharmacol Ther 2015; 148: 114-131