Intensivmedizin up2date 2025; 21(02): 133-150
DOI: 10.1055/a-2335-3807
Allgemeine Intensivmedizin

Akutes Lungenversagen (ARDS) – Update

Christopher Lotz
,
Philipp M. Lepper
,
Jonas Ajouri
,
Ralf M. Muellenbach

Das akute Lungenversagen (Acute Respiratory Distress Syndrome, ARDS) ist eine komplexe Herausforderung mit hoher Mortalität und Morbidität. Die Mortalität ist abhängig vom Schweregrad und kann bei schweren Fällen 40–60% betragen [1]. Besondere Aufmerksamkeit mit hoher Forschungsintensität und neuen Einblicken erhielt das ARDS in den letzten Jahren durch die COVID-19-Pandemie. Systematisch entwickelte Handlungsempfehlungen zur Therapie des ARDS finden sich in der S3-Leitlinie „Invasive Beatmung und Einsatz extrakorporaler Verfahren bei akuter respiratorischer Insuffizienz“ [2].

Kernaussagen
  • Die Pneumonie bzw. Sepsis mit pulmonalem Fokus ist die häufigste Ursache für das akute Lungenversagen (Acute Respiratory Distress Syndrome, ARDS).

  • Klinisch stehen Dyspnoe und fortschreitende Hypoxämie mit akutem Beginn und oft rascher Verschlechterung im Vordergrund. Letztlich stellt das ARDS eine Systemerkrankung mit Multiorganversagen dar.

  • Die Einteilung der Schweregrade erfolgt anhand der Berlin-Kriterien; die Diagnostik schließt CT, mikrobiologische Diagnostik und ggf. Echokardiografie ein.

  • Die lungenprotektive Beatmung ist die Grundlage der invasiven Beatmungsstrategie bei ARDS. Ein Δp von max. 14–15 cmH2O sollte die Wahl des geeigneten TV bestimmen.

  • Trotz des eindeutigen Benefits und niedriger Komplikationsraten sowie einer eindeutigen Leitlinienempfehlung der Bauchlagerung bei moderatem und schwerem ARDS wird diese oftmals nicht konsequent angewandt; hier liegt noch Verbesserungspotenzial.

  • Im ARDS existieren zum gleichen Zeitpunkt in verschiedenen Lungenabschnitten atelektatische, regulär belüftete und überblähte Bereiche. Rekrutierungsmanöver mit hohen Drücken sollten nicht erfolgen.

  • Darüber hinaus sind supportive Therapiemaßnahmen zu nennen in Form von venovenöser ECMO (vvECMO), Muskelrelaxierung, Gabe von Glukokortikoiden.



Publikationsverlauf

Artikel online veröffentlicht:
25. Juni 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Santa Cruz R, Matesa A, Gomez A. et al. Mortality due to acute respiratory distress syndrome in Latin America. Crit Care Med 2024; 52: 1275-1284
  • 2 Fichtner F, Moerer O, Laudi S. et al. Mechanical ventilation and extracorporeal membrane oxygena tion in acute respiratory insufficiency. Dtsch Arztebl Int 2018; 115: 840-847
  • 3 Bellani G, Laffey JG, Pham T. et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 2016; 315: 788-800
  • 4 Matsumoto S, Fang X, Traber MG. et al. Dose-dependent pulmonary toxicity of aerosolized vitamin E acetate. Am J Respir Cell Mol Biol 2020; 63: 748-757
  • 5 Force ADT, Ranieri VM, Rubenfeld GD. et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012; 307: 2526-2533
  • 6 Bos LDJ, de Grooth HJ, Tuinman PR. A structured diagnostic algorithm for patients with ARDS. Crit Care 2023; 27: 94
  • 7 Ong DSY, Spitoni C, Klein Klouwenberg PMC. et al. Cytomegalovirus reactivation and mortality in patients with acute respiratory distress syndrome. Intensive Care Med 2016; 42: 333-341
  • 8 Barrot L, Asfar P, Mauny F. et al. Liberal or conservative oxygen therapy for acute respiratory distress syndrome. N Engl J Med 2020; 382: 999-1008
  • 9 Zhao X, Xiao H, Dai F. et al. Classification and effectiveness of different oxygenation goals in mechanically ventilated critically ill patients: network meta-analysis of randomised controlled trials. Eur Respir J 2021; 58: 2002928
  • 10 Gutierrez G, Pohil RJ. Oxygen consumption is linearly related to O2 supply in critically ill patients. J Crit Care 1986; 1: 45-53
  • 11 Weg JG. Oxygen transport in adult respiratory distress syndrome and other acute circulatory problems: relationship of oxygen delivery and oxygen consumption. Crit Care Med 1991; 19: 650-657
  • 12 Aggarwal NR, Brower RG, Hager DN. et al. Oxygen exposure resulting in arterial oxygen tensions above the protocol goal was associated with worse clinical outcomes in acute respiratory distress syndrome. Crit Care Med 2018; 46: 517-524
  • 13 Tasaka S, Ohshimo S, Takeuchi M. et al. ARDS Clinical Practice Guideline 2021. J Intensive Care 2022; 10: 32
  • 14 Nin N, Muriel A, Penuelas O. et al. Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome. Intensive Care Med 2017; 43: 200-208
  • 15 Gendreau S, Geri G, Pham T. et al. The role of acute hypercapnia on mortality and short-term physiology in patients mechanically ventilated for ARDS: a systematic review and meta-analysis. Intensive Care Med 2022; 48: 517-534
  • 16 Madotto F, Rezoagli E, McNicholas BA. et al. Patterns and Impact of arterial CO(2) management in patients with acute respiratory distress syndrome: insights from the LUNG SAFE study. Chest 2020; 158: 1967-1982
  • 17 Tiruvoipati R, Serpa Neto A, Young M. et al. An Exploratory analysis of the association between hypercapnia and hospital mortality in critically Ill patients with sepsis. Ann Am Thorac Soc 2022; 19: 245-254
  • 18 Cavalcanti AB, Suzumura EA, Laranjeira LN. Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators. et al. Effect of Lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on Mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 2017; 318: 1335-1345
  • 19 Grieco DL, Maggiore SM, Roca O. et al. Non-invasive ventilatory support and high-flow nasal oxygen as first-line treatment of acute hypoxemic respiratory failure and ARDS. Intensive Care Med 2021; 47: 851-866
  • 20 Roca O, Telias I, Grieco DL. Bedside-available strategies to minimise P-SILI and VILI during ARDS. Intensive Care Med 2024; 50: 597-601
  • 21 Bellani G, Laffey JG, Pham T. et al. Noninvasive ventilation of patients with acute respiratory distress syndrome. Insights from the LUNG SAFE study. Am J Respir Crit Care Med 2017; 195: 67-77
  • 22 Brower RG, Matthay MA, Morris A. Acute Respiratory Distress Syndrome Network. et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342: 1301-1308
  • 23 Amato MB, Meade MO, Slutsky AS. et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015; 372: 747-755
  • 24 Goligher EC, Costa ELV, Yarnell CJ. et al. Effect of Lowering Vt on Mortality in Acute Respiratory Distress Syndrome Varies with Respiratory System Elastance. Am J Respir Crit Care Med 2021; 203: 1378-1385
  • 25 Needham DM, Yang T, Dinglas VD. et al. Timing of low tidal volume ventilation and intensive care unit mortality in acute respiratory distress syndrome. A prospective cohort study. Am J Respir Crit Care Med 2015; 191: 177-185
  • 26 Laffey JG, Bellani G, Pham T. et al. Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Med 2016; 42: 1865-1876
  • 27 Villar J, Martin-Rodriguez C, Dominguez-Berrot AM. et al. A quantile analysis of plateau and driving pressures: effects on mortality in patients with acute respiratory distress syndrome receiving lung-protective ventilation. Crit Care Med 2017; 45: 843-850
  • 28 Papazian L, Aubron C, Brochard L. et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care 2019; 9: 69
  • 29 Costa ELV, Slutsky AS, Brochard LJ. et al. Ventilatory Variables and mechanical power in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2021; 204: 303-311
  • 30 Frat JP, Thille AW, Mercat A. et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 2015; 372: 2185-2196
  • 31 Shang X, Wang Y. Comparison of outcomes of high-flow nasal cannula and noninvasive positive-pressure ventilation in patients with hypoxemia and various APACHE II scores after extubation. Ther Adv Respir Dis 2021; 15: 17534666211004235
  • 32 Ranieri VM, Tonetti T, Navalesi P. et al. High-flow nasal oxygen for severe hypoxemia: oxygenation response and outcome in patients with COVID-19. Am J Respir Crit Care Med 2022; 205: 431-439
  • 33 Wang J, Duan J, Zhou L. Incidence of noninvasive ventilation failure and mortality in patients with acute respiratory distress syndrome: a systematic review and proportion meta-analysis. BMC Pulm Med 2024; 24: 48
  • 34 Guerin C, Reignier J, Richard JC. et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013; 368: 2159-2168
  • 35 Ferrando C, Mellado-Artigas R, Gea A. et al. Awake prone positioning does not reduce the risk of intubation in COVID-19 treated with high-flow nasal oxygen therapy: a multicenter, adjusted cohort study. Crit Care 2020; 24: 597
  • 36 Guerin C, Beuret P, Constantin JM. et al. A prospective international observational prevalence study on prone positioning of ARDS patients: the APRONET (ARDS Prone Position Network) study. Intensive Care Med 2018; 44: 22-37
  • 37 Pierrakos C, Smit MR, Hagens LA. et al. Assessment of the Effect of recruitment maneuver on lung aeration through imaging analysis in invasively ventilated patients: a systematic review. Front Physiol 2021; 12: 666941
  • 38 Kacmarek RM, Villar J, Sulemanji D. et al. Open lung approach for the acute respiratory distress syndrome: a pilot, randomized controlled trial. Crit Care Med 2016; 44: 32-42
  • 39 Hodgson CL, Cooper DJ, Arabi Y. et al. Maximal Recruitment open lung ventilation in acute respiratory distress syndrome (PHARLAP). A phase II, Multicenter randomized controlled clinical trial. Am J Respir Crit Care Med 2019; 200: 1363-1372
  • 40 Cui Y, Cao R, Wang Y. et al. Lung recruitment maneuvers for ARDS Patients: a systematic review and meta-analysis. Respiration 2020; 99: 264-276
  • 41 Pensier J, de Jong A, Hajjej Z. et al. Effect of lung recruitment maneuver on oxygenation, physiological parameters and mortality in acute respiratory distress syndrome patients: a systematic review and meta-analysis. Intensive Care Med 2019; 45: 1691-1702
  • 42 Peek GJ, Mugford M, Tiruvoipati R. et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 2009; 374: 1351-1363
  • 43 Combes A, Peek GJ, Hajage D. et al. ECMO for severe ARDS: systematic review and individual patient data meta-analysis. Intensive Care Med 2020; 46: 2048-2057
  • 44 Munshi L, Walkey A, Goligher E. et al. Venovenous extracorporeal membrane oxygenation for acute respiratory distress syndrome: a systematic review and meta-analysis. Lancet Respir Med 2019; 7: 163-172
  • 45 Herrmann J, Lotz C, Karagiannidis C. et al. Key characteristics impacting survival of COVID-19 extracorporeal membrane oxygenation. Crit Care 2022; 26: 190
  • 46 Papazian L, Forel JM, Gacouin A. et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 2010; 363: 1107-1116
  • 47 Moss M, Huang DT, Brower RG. National Heart, Lung, and Blood Institute PETAL Clinical Trials Network. et al. Early neuromuscular blockade in the acute respiratory distress syndrome. N Engl J Med 2019; 380: 1997-2008
  • 48 Tarazan N, Alshehri M, Sharif S. et al. Neuromuscular blocking agents in acute respiratory distress syndrome: updated systematic review and meta-analysis of randomized trials. Intensive Care Med Exp 2020; 8: 61
  • 49 Grasselli G, Calfee CS, Camporota L. et al. ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies. Intensive Care Med 2023; 49: 727-759
  • 50 Qadir N, Sahetya S, Munshi L. et al. An Update on management of adult patients with acute respiratory distress syndrome: an official american thoracic society clinical practice guideline. Am J Respir Crit Care Med 2024; 209: 24-36
  • 51 Group RC, Horby P, Lim WS. et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med 2021; 384: 693-704
  • 52 Tomazini BM, Maia IS, Cavalcanti AB. et al. Effect of Dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: the CoDEX Randomized clinical trial. JAMA 2020; 324: 1307-1316
  • 53 Villar J, Ferrando C, Martinez D. et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med 2020; 8: 267-276
  • 54 Zayed Y, Barbarawi M, Ismail E. et al. Use of glucocorticoids in patients with acute respiratory distress syndrome: a meta-analysis and trial sequential analysis. J Intensive Care 2020; 8: 43
  • 55 Chaudhuri D, Sasaki K, Karkar A. et al. Corticosteroids in COVID-19 and non-COVID-19-ARDS: a systematic review and meta-analysis. Intensive Care Med 2021; 47: 521-537
  • 56 Chaudhuri D, Nei AM, Rochwerg B. et al. 2024 focused update: guidelines on use of corticosteroids in sepsis, acute respiratory distress syndrome, and community-acquired pneumonia. Crit Care Med 2024; 52: e219-e233
  • 57 Dellinger RP, Zimmerman JL, Taylor RW. et al. Effects of inhaled nitric oxide in patients with acute respiratory distress syndrome: results of a randomized phase II trial. Inhaled nitric oxide in ARDS study group. Crit Care Med 1998; 26: 15-23
  • 58 Rossaint R, Falke KJ, Lopez F. et al. Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med 1993; 328: 399-405