Diabetes aktuell 2024; 22(04): 163-168
DOI: 10.1055/a-2329-5194
Schwerpunkt

Süßstoffe und ihre Wirkung auf das Körpergewicht

Epidemiologie, Interventionsstudien und neue mechanistische Studien
Stefan Kabisch
1   Charité Universitätsmedizin Berlin, Klinik für Endokrinologie und Stoffwechselmedizin, Campus Benjamin Franklin, Berlin, Deutschland
› Author Affiliations

ZUSAMMENFASSUNG

Süßstoffe sind chemisch, geschmacklich und biologisch heterogene, hochpotente Süßungsmittel, die in kalorienreduzierten Getränken, hochprozessierten Speisen und diätetischen Ersatzmahlzeiten verwendet werden. Maximal empfohlene Verzehrsmengen (“acceptable daily intake”, ADI) werden bei ausgewogener Ernährung und bei ausgeprägter Nutzung trotz konservativer Auslegung meist nicht erreicht. Süßstoffmischungen begünstigen die Unterschreitung der ADIs und die Geschmacksoptimierung. Epidemiologisch ist Süßstoffverzehr mit Adipositas, Typ-2-Diabetes, kardiovaskuläre Erkrankungen und Krebs assoziiert. Starke Confounder (andere Lebensstilfaktoren) und „reverse causality“ schwächen aber die Aussagekraft.

In verblindeten randomisiert-kontrollierten Studien (RCTs) bewirken Süßstoffe gegenüber Zucker eine signifikante Reduktion von Körpergewicht und Leberfett, während glykämische Parameter zum Nachteil trenden. Der Gewichtsverlust liegt unter der Erwartung gemäß der theoretisch eingesparten Kalorien. Psychologische oder metabolische Störeffekte der Süßstoffe sind daher aktuell Gegenstand intensiver Forschung, bei der das Inkretinsystem, die Konditionierung auf Süßreize und das Darmmikrobiom Ansatzpunkte darstellen.



Publication History

Article published online:
26 June 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Kim SH, Dubois GE.. Natural high potency sweeteners. In: Marie S, Piggott JR. eds Handbook of Sweeteners. Springer; Boston, MA 1991
  • 2 Hoppe K. The psychophysics of sweet taste. 7. New determination of sweet taste parameters of acesulfame, aspartame, cyclamate, saccharin, glucose and sorbitol. Nahrung 1995; 39: 275-281
  • 3 Cardello HM, Da Silva MA, Damasio MH. Measurement of the relative sweetness of stevia extract, aspartame and cyclamate/saccharin blend as compared to sucrose at different concentrations. Plant Foods Hum Nutr 1999; 54: 119-130
  • 4 Winther R, Aasbrenn M, Farup PG. Intake of non-nutritive sweeteners is associated with an unhealthy lifestyle: a cross-sectional study in subjects with morbid obesity. BMC Obes 2017; 04: 41
  • 5 Manavalan D, Shubrook C, Young CF. Consumption of Non-nutritive Sweeteners and Risk for Type 2 Diabetes: What Do We Know, and Not?. Curr Diab Rep 2021; 21: 53
  • 6 Naomi ND, Ngo J, Brouwer-Brolsma E. et al Sugar-sweetened beverages, low/no-calorie beverages, fruit juice and non-alcoholic fatty liver disease defined by fatty liver index: the SWEET project. Nutr Diabetes 2023; 13: 6
  • 7 Pereira MA. Diet beverages and the risk of obesity, diabetes, and cardiovascular disease: a review of the evidence. Nutr Rev 2013; 71: 433-440
  • 8 Palomar-Cros A, Straif K, Romaguera D. et al Consumption of aspartame and other artificial sweeteners and risk of cancer in the Spanish multicase-control study (MCC-Spain). Int J Cancer 2023; 153: 979-993
  • 9 Chia CW, Shardell M, Tanaka T. et al Chronic Low-Calorie Sweetener Use and Risk of Abdominal Obesity among Older Adults: A Cohort Study. PLoS One 2016; 11: e0167241
  • 10 Debras C, Deschasaux-Tanguy M, Chazelas E. et al Artificial Sweeteners and Risk of Type 2 Diabetes in the Prospective NutriNet-Santé Cohort. Diabetes Care 2023; 46: 1681-1690
  • 11 Debras C, Chazelas E, Sellem L. et al Artificial sweeteners and risk of cardiovascular diseases: results from the prospective NutriNet-Santé cohort. BMJ 2022; 378: e071204
  • 12 Debras C, Chazelas E, Srour B. et al Artificial sweeteners and cancer risk: Results from the NutriNet-Santé population-based cohort study. PLoS Med 2022; 19: e1003950
  • 13 Mayer-Davis E, Leidy H, Mattes R. et al Beverage Consumption and Growth, Size, Body Composition, and Risk of Overweight and Obesity: A Systematic Review [Internet]. Alexandria (VA): USDA Nutrition Evidence Systematic Review 2020
  • 14 Zhu C, Ji D, Ma J. et al Association between artificial sweetenersaspartame consumption and colorectal cancer risk: evidence-based strategies. Oncology 2023 DOI: 10.1159/000534812
  • 15 Summary of findings of the evaluation of aspartame at the International Agency for Research on Cancer (IARC) Monographs Programme’s 134th Meeting, and the Joint FAO/WHO Expert Committee on Food Additives (JECFA) 96th meeting. Im Internet. https://www.who.int/publications/m/item/summary-of-findings-ofthe-evaluation-of-aspartame-at-the-international-agency-forresearch-on-cancer-(iarc)-monographs-programme-s-134th-meeting--and-the-joint-fao-who-expert-committee-on-food-additives-(jecfa)-96th-meeting Stand: 09.12.2023
  • 16 Maimaitiyiming M, Yang H, Zhou L. et al Associations between an obesity-related dietary pattern and incidence of overall and sitespecific cancers: a prospective cohort study. BMC Med 2023; 21: 251
  • 17 Drewnowski A, Rehm CD. The use of low-calorie sweeteners is associated with self-reported prior intent to lose weight in a representative sample of US adults. Nutr Diabetes 2016; 06: e202 DOI: 10.1038/nutd.2016.9.
  • 18 Witkowski M, Nemet I, Alamri H. et al The artificial sweetener erythritol and cardiovascular event risk. Nat Med 2023; 29: 710-718
  • 19 Imamura F, O’Connor L, Ye Z. et al Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. Br J Sports Med 2016; 50: 496-504
  • 20 Laviada-Molina H, Molina-Segui F, Pérez-Gaxiola G. et al Effects of nonnutritive sweeteners on body weight and BMI in diverse clinical contexts: Systematic review and meta-analysis. Obes Rev 2020; 21: e13020
  • 21 Espinosa A, Mendoza K, Laviada-Molina H. et al Effects of non-nutritive sweeteners on the BMI of children and adolescents: a systematic review and meta-analysis of randomised controlled trials and prospective cohort studies. Lancet Glob Health 2023; 11: S8
  • 22 McGlynn ND, Khan TA, Wang L. et al Association of Low- and No-Calorie Sweetened Beverages as a Replacement for Sugar-Sweetened Beverages With Body Weight and Cardiometabolic Risk: A Systematic Review and Meta-analysis. JAMA Netw Open 2022; 05: e222092
  • 23 Peters JC, Beck J, Cardel M. et al The effects of water and non-nutritive sweetened beverages on weight loss and weight maintenance: A randomized clinical trial. Obesity (Silver Spring) 2016; 24: 297-304
  • 24 Golzan SA, Movahedian M, Haghighat N. et al Association between non-nutritive sweetener consumption and liver enzyme levels in adults: a systematic review and meta-analysis of randomized clinical trials. Nutr Rev 2023; 81: 1105-1117
  • 25 Movahedian M, Golzan SA, Ashtary-Larky D. et al The effects of artificial- and stevia-based sweeteners on lipid profile in adults: a GRADE-assessed systematic review, meta-analysis, and metaregression of randomized clinical trials. Crit Rev Food Sci Nutr 2023; 63: 5063-5079
  • 26 Greyling A, Appleton KM, Raben A. et al Acute glycemic and insulinemic effects of low-energy sweeteners: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2020; 112: 1002-1014
  • 27 Zhang R, Noronha JC, Khan TA. et al The Effect of Non-Nutritive Sweetened Beverages on Postprandial Glycemic and Endocrine Responses: A Systematic Review and Network Meta-Analysis. Nutrients 2023; 15: 1050 DOI: 10.3390/nu15041050.
  • 28 World Health Organization Rios-Leyvraz M, Montez J. health effects of the use of non-sugar sweeteners: a systematic review and metaanalysis. World Health Organization. 2022
  • 29 Khan TA, Lee JJ, Ayoub-Charette S. et al WHO guideline on the use of non-sugar sweeteners: a need for reconsideration. Eur J Clin Nutr 2023; 77: 1009-1013
  • 30 Meyer-Gerspach AC, Wölnerhanssen B, Beglinger C. Functional roles of low calorie sweeteners on gut function. Physiol Behav 2016; 164: 479-481
  • 31 Kemper M, Kabisch S, Meyerhof W. et al Der Einfluss intestinaler Süßrezeptoren auf die glukoseabhängige Inkretinfreisetzung – eine Humanstudie des SEGATROM-Projekts** (Sensorische und gastrointestinale Einflüsse von Geschmacksrezeptorvarianten auf den Metabolismus und die Ernährung des Menschen). Diabetol Stoffwechs 2015; 10: P120
  • 32 Kabisch S, Kemper M, Meyerhof W. et al Study on Immediate and Long-term Effects on Incretin Release Induced by Artificial Sweeteners (ILIAS) – Results and Outlook from the SEGATROM Study, IFADRC, Barcelona.
  • 33 Dalenberg JR, Patel BP, Denis R. et al Short-Term Consumption of Sucralose with, but Not without, Carbohydrate Impairs Neural and Metabolic Sensitivity to Sugar in Humans. Cell Metab 2020; 31: 493-502e7 DOI: 10.1016/j.cmet.2020.01.014.
  • 34 Van Opstal AM, Hafkemeijer A, van den Berg-Huysmans AA. et al Brain activity and connectivity changes in response to nutritive natural sugars, non-nutritive natural sugar replacements and artificial sweeteners. Nutr Neurosci 2021; 24: 395-405
  • 35 Lee HY, Jack M, Poon T. et al Effects of Unsweetened Preloads and Preloads Sweetened with Caloric or Low-/No-Calorie Sweeteners on Subsequent Energy Intakes: A Systematic Review and Meta-Analysis of Controlled Human Intervention Studies. Adv Nutr 2021; 12: 1481-1499
  • 36 Mehat K, Chen Y, Corpe CP. The Combined Effects of Aspartame and Acesulfame-K Blends on Appetite: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Adv Nutr 2022; 13: 2329-2340
  • 37 Farr OM. Acute diet soda consumption alters brain responses to food cues in humans: A randomized, controlled, cross-over pilot study. Nutr Health 2021; 27: 295-299
  • 38 Stamataki NS, Mckie S, Scott C. et al Mapping the Homeostatic and Hedonic Brain Responses to Stevia Compared to Caloric Sweeteners and Water: A Double-Blind Randomised Controlled Crossover Trial in Healthy Adults. Nutrients 2022; 14: 4172
  • 39 Yeung AWK, Wong NSM. How Does Our Brain Process Sugars and Non-Nutritive Sweeteners Differently: A Systematic Review on Functional Magnetic Resonance Imaging Studies. Nutrients 2020; 12: 3010
  • 40 Yunker AG, Alves JM, Luo S. et al Obesity and Sex-Related Associations With Differential Effects of Sucralose vs Sucrose on Appetite and Reward Processing: A Randomized Crossover Trial. JAMA Netw Open 2021; 04: e2126313
  • 41 Suez J, Korem T, Zeevi D. et al Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014; 514: 181-186
  • 42 Suez J, Cohen Y, Valdés-Mas R. et al Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 2022; 185: 3307-3328.e19
  • 43 Tsan L, Chometton S, Hayes AM. et al Early-life low-calorie sweetener consumption disrupts glucose regulation, sugar-motivated behavior, and memory function in rats. JCI Insight 2022; 07: e157714
  • 44 Murali A, Giri V, Cameron HJ. et al Investigating the gut microbiome and metabolome following treatment with artificial sweeteners acesulfame potassium and saccharin in young adult Wistar rats. Food Chem Toxicol 2022; 165: 113123
  • 45 Ahmad SY, Friel J, Mackay D. The Effects of Non-Nutritive Artificial Sweeteners, Aspartame and Sucralose, on the Gut Microbiome in Healthy Adults: Secondary Outcomes of a Randomized Double-Blinded Crossover Clinical Trial. Nutrients 2020; 12: 3408
  • 46 Serrano J, Smith KR, Crouch AL. et al High-dose saccharin supplementation does not induce gut microbiota changes or glucose intolerance in healthy humans and mice. Microbiome 2021; 09: 11
  • 47 Muilwijk M, Beulens JWJ, Groeneveld L. et al The entero-endocrine response following a mixed-meal tolerance test with a non-nutritive pre-load in participants with pre-diabetes and type 2 diabetes: A crossover randomized controlled trial proof of concept study. PLoS One 2023; 18: e0290261
  • 48 Conz A, Salmona M, Diomede L. Effect of Non-Nutritive Sweeteners on the Gut Microbiota. Nutrients 2023; 15: 1869