Aktuelle Kardiologie 2024; 13(04): 263-270
DOI: 10.1055/a-2320-9223
Kurzübersicht

Epikardiales Fett: kardiovaskuläre Risiken und Manifestation einer veränderten Fettverteilung

Epicardial Adipose Tissue: Cardiovascular Risks and Manifestation of Altered Fat Distribution
1   Medizinische Klinik I - Klinik für Kardiologie, Angiologie und Internistische Intensivmedizin, Uniklinik RWTH Aachen, Aachen, Deutschland (Ringgold ID: RIN39058)
,
Dirk Müller-Wieland
2   KKS - Koordinierungszentrum für Kardiologische Studien, Uniklinik RWTH Aachen, Aachen, Deutschland
› Institutsangaben

Zusammenfassung

Die Prävalenz einer chronischen Herzinsuffizienz (heart failure, HF) ist in der westlichen Bevölkerung sehr hoch. Bei der HF spielen neben einer koronaren Herzerkrankung gerade bei den Patienten mit einer erhaltenen Pumpfunktion (Heart Failure with preserved Ejection Fraction, HFpEF) weitere metabolische Faktoren, wie z. B. Übergewicht und Diabetes, eine wichtige Rolle.

Ektopes Fettgewebe, insbesondere epikardiales Fett (epicardial adipose tissue, EAT), könnte ein neues Bindeglied zwischen ischämischer Herzerkrankung inklusive Remodeling, Übergewicht/Adipositas und der Entwicklung einer HFpEF sein. EAT besitzt eine dichotome Funktion als Energiepuffer oder Risikofaktor der Koronarkalzifizierung und beeinflusst als endokrines Gewebe insbesondere durch Adipokine wie Adiponectin den weiteren Krankheitsprogress nach Myokardinfarkt. Seneszenzvorgänge im Fettgewebe verändern dessen endokrines Verhalten sowie dessen immunzelluläre Zusammensetzung, was den Krankheitsprogress und auch die Entwicklung einer HFpEF begünstigen könnte. Interessanterweise reduziert körperliche Aktivität Prozesse der Seneszenz und Gewichtsreduktion die Menge an EAT.

Abstract

The prevalence of chronic heart failure (HF) is of very high amount in the Western population. In addition to coronary heart disease, other metabolic factors such as obesity and diabetes play an important role in HF, especially in patients with preserved LV function (Heart Failure with preserved Ejection Fraction, HFpEF).

Ectopic adipose tissue, especially epicardial adipose tissue (EAT), could be a new link between ischaemic heart disease, including remodelling, and overweight/obesity and the development of HFpEF. EAT has a dichotomous function as an energy buffer or risk factor for coronary calcification and, as an endocrine tissue, influences further disease progression after myocardial infarction, particularly through adipokines such as adiponectin. Senescence processes in adipose tissue change its endocrine behaviour as well as its immune cellular composition, which could promote disease progression and the development of HFpEF. Interestingly, physical activity reduces senescence processes and weight reduction reduces the amount of EAT.

Was ist wichtig?

Ektopes Fettgewebe scheint ein neues Bindeglied zwischen Koronarrisiko sowie Übergewicht und Herzinsuffizienz mit erhaltener Ejektionsfraktion (HFpEF) zu sein. Seneszenzvorgänge beeinflussen zudem die Funktionalität und proinflammatorische Vorgänge des Fettgewebes und damit möglicherweise auch direkt krankheitsrelevante Prozesse bei der Atherosklerose und auch der Myokardfunktion sowie den Krankheitsprogress. Bildgebende und laborchemische Diagnostik für das epikardiale Fettgewebe (EAT) stehen bereits zur Verfügung und sollten ggf. häufiger zur weitere Risikostratifizierung von Patienten eingesetzt werden.



Publikationsverlauf

Artikel online veröffentlicht:
31. Juli 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Arend M, Arno WH. Clinical epidemiology of heart failure. Heart 2007; 93: 1137
  • 2 Dunlay SM, Roger VL, Redfield MM. Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 2017; 14: 591-602
  • 3 Kautzky-Willer A, Harreiter J, Pacini G. Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus. Endocr Rev 2016; 37: 278-316
  • 4 Ravera A, Santema BT, de Boer RA. et al. Distinct pathophysiological pathways in women and men with heart failure. Eur J Heart Fail 2022; 24: 1532-1544
  • 5 Müller-Wieland D, Knebel B, Haas J. et al. Adipositas: ektope Fettverteilung und Herz. Herz 2010; 35: 198-205
  • 6 Després J-P. Body fat distribution and risk of cardiovascular disease: an update. Circulation 2012; 126: 1301-1313
  • 7 Levelt E, Pavlides M, Banerjee R. et al. Ectopic and Visceral Fat Deposition in Lean and Obese Patients With Type 2 Diabetes. J Am Coll Cardiol 2016; 68: 53-63
  • 8 Fox CS, Massaro JM, Hoffmann U. et al. Abdominal Visceral and Subcutaneous Adipose Tissue Compartments: Association With Metabolic Risk Factors in the Framingham Heart Study. Circulation 2007; 116: 39-48
  • 9 Neeland IJ, Ayers CR, Rohatgi AK. et al. Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults. Obesity (Silver Spring) 2013; 21: E439-E447
  • 10 Akoumianakis I, Antoniades C. The interplay between adipose tissue and the cardiovascular system: is fat always bad?. Cardiovasc Res 2017; 113: 999-1008
  • 11 Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nat Rev Cardiol 2022; 19: 593-606
  • 12 Iacobellis G, Ribaudo MC, Assael F. et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab 2003; 88: 5163-5168
  • 13 Sacks HS, Fain JN. Human epicardial adipose tissue: A review. Am Heart J 2007; 153: 907-917
  • 14 Davidovich D, Gastaldelli A, Sicari R. Imaging cardiac fat. Eur Heart J Cardiovasc Imaging 2013; 14: 625-630
  • 15 Konishi M, Sugiyama S, Sato Y. et al. Pericardial fat inflammation correlates with coronary artery disease. Atherosclerosis 2010; 213: 649-655
  • 16 Antonopoulos AS, Sanna F, Sabharwal N. et al. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med 2017; 9: eaal2658
  • 17 Akoumianakis I, Tarun A, Antoniades C. Perivascular adipose tissue as a regulator of vascular disease pathogenesis: identifying novel therapeutic targets. Br J Pharmacol 2017; 174: 3411-3424
  • 18 Park TS, Yamashita H, Blaner WS. et al. Lipids in the heart: a source of fuel and a source of toxins. Curr Opin Lipidol 2007; 18: 277-282
  • 19 Taegtmeyer H, Young ME, Lopaschuk GD. et al. Assessing Cardiac Metabolism: A Scientific Statement From the American Heart Association. Circ Res 2016; 118: 1659-1701
  • 20 Ng Arnold CT, Strudwick M, van der Geest Rob J. et al. Impact of Epicardial Adipose Tissue, Left Ventricular Myocardial Fat Content, and Interstitial Fibrosis on Myocardial Contractile Function. Circ Cardiovasc Imaging 2018; 11: e007372
  • 21 Peterson LR, Herrero P, Schechtman KB. et al. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 2004; 109: 2191-2196
  • 22 Marwick TH, Gimelli A, Plein S. et al. Multimodality imaging approach to left ventricular dysfunction in diabetes: an expert consensus document from the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2022; 23: e62-e84
  • 23 Wu QQ, Xiao Y, Yuan Y. et al. Mechanisms contributing to cardiac remodelling. Clin Sci (Lond) 2017; 131: 2319-2345
  • 24 van Woerden G, van Veldhuisen DJ, Gorter TM. et al. The value of echocardiographic measurement of epicardial adipose tissue in heart failure patients. ESC Heart Fail 2022; 9: 953-957
  • 25 Mahabadi AA, Anapliotis V, Dykun I. et al. Epicardial fat and incident heart failure with preserved ejection fraction in patients with coronary artery disease. Int J Cardiol 2022; 357: 140-145
  • 26 Maimaituxun G, Kusunose K, Yamada H. et al. Deleterious Effects of Epicardial Adipose Tissue Volume on Global Longitudinal Strain in Patients With Preserved Left Ventricular Ejection Fraction. Front Cardiovasc Med 2020; 7: 607825
  • 27 Kosmala W, Jellis CL, Marwick TH. Exercise limitation associated with asymptomatic left ventricular impairment: analogy with stage B heart failure. J Am Coll Cardiol 2015; 65: 257-266
  • 28 Antonopoulos Alexios S, Antoniades C. Cardiac Magnetic Resonance Imaging of Epicardial and Intramyocardial Adiposity as an Early Sign of Myocardial Disease. Circ Cardiovasc Imaging 2018; 11: e008083
  • 29 Gan L, Liu D, Xie D. et al. Ischemic Heart-Derived Small Extracellular Vesicles Impair Adipocyte Function. Circ Res 2022; 130: 48-66
  • 30 Elsanhoury A, Nelki V, Kelle S. et al. Epicardial Fat Expansion in Diabetic and Obese Patients With Heart Failure and Preserved Ejection Fraction-A Specific HFpEF Phenotype. Front Cardiovasc Med 2021; 8: 720690
  • 31 Horckmans M, Bianchini M, Santovito D. et al. Pericardial Adipose Tissue Regulates Granulopoiesis, Fibrosis, and Cardiac Function After Myocardial Infarction. Circulation 2018; 137: 948-960
  • 32 Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res 2005; 96: 939-949
  • 33 Ouchi N, Kihara S, Funahashi T. et al. Obesity, adiponectin and vascular inflammatory disease. Curr Opin Lipidol 2003; 14: 561-566
  • 34 Yang Q, Graham TE, Mody N. et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005; 436: 356-362
  • 35 Doukbi E, Soghomonian A, Sengenès C. et al. Browning Epicardial Adipose Tissue: Friend or Foe?. Cells 2022; 11: 991
  • 36 Patel VB, Shah S, Verma S. et al. Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary artery disease. Heart Fail Rev 2017; 22: 889-902
  • 37 Freiholtz D, Bergman O, Pradhananga S. et al. SPP1/osteopontin: a driver of fibrosis and inflammation in degenerative ascending aortic aneurysm?. J Mol Med (Berl) 2023; 101: 1323-1333
  • 38 Sodek J, Ganss B, McKee MD. Osteopontin. Crit Rev Oral Biol Med 2000; 11: 279-303
  • 39 Khoramipour K, Chamari K, Hekmatikar AA. et al. Adiponectin: Structure, Physiological Functions, Role in Diseases, and Effects of Nutrition. Nutrients 2021; 13: 1180
  • 40 Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 1996; 271: 10697-10703
  • 41 Maeda K, Okubo K, Shimomura I. et al. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun 1996; 221: 286-289
  • 42 Scherer PE, Williams S, Fogliano M. et al. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 1995; 270: 26746-26749
  • 43 Arita Y, Kihara S, Ouchi N. et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999; 257: 79-83
  • 44 Tedford RJ, Houston BA. HFpEF, Obesity, and Epicardial Adipose Tissue: Don’t Have Your Cake and EAT It, Too. JACC: Heart Fail 2020; 8: 677-680
  • 45 Cnop M, Havel PJ, Utzschneider KM. et al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia 2003; 46: 459-469
  • 46 Weyer C, Funahashi T, Tanaka S. et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001; 86: 1930-1935
  • 47 Gohbara M, Iwahashi N, Akiyama E. et al. Association between epicardial adipose tissue volume and myocardial salvage in patients with a first ST-segment elevation myocardial infarction: An epicardial adipose tissue paradox. J Cardiol 2016; 68: 399-405
  • 48 Antonopoulos AS, Margaritis M, Coutinho P. et al. Reciprocal effects of systemic inflammation and brain natriuretic peptide on adiponectin biosynthesis in adipose tissue of patients with ischemic heart disease. Arterioscler Thromb Vasc Biol 2014; 34: 2151-2159
  • 49 Kistorp C, Faber J, Galatius S. et al. Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure. Circulation 2005; 112: 1756-1762
  • 50 Margaritis M, Antonopoulos AS, Digby J. et al. Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels. Circulation 2013; 127: 2209-2221
  • 51 Kojima S, Funahashi T, Sakamoto T. et al. The variation of plasma concentrations of a novel, adipocyte derived protein, adiponectin, in patients with acute myocardial infarction. Heart 2003; 89: 667
  • 52 Hotta K, Funahashi T, Arita Y. et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000; 20: 1595-1599
  • 53 Kumada M, Kihara S, Sumitsuji S. et al. Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol 2003; 23: 85-89
  • 54 Ouchi N, Kihara S, Arita Y. et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 1999; 100: 2473-2476
  • 55 Yamauchi T, Kamon J, Minokoshi Y. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8: 1288-1295
  • 56 Tomas E, Tsao TS, Saha AK. et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci U S A 2002; 99: 16309-16313
  • 57 Wu X, Motoshima H, Mahadev K. et al. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 2003; 52: 1355-1363
  • 58 Shibata R, Izumiya Y, Sato K. et al. Adiponectin protects against the development of systolic dysfunction following myocardial infarction. J Mol Cell Cardiol 2007; 42: 1065-1074
  • 59 Kobayashi H, Ouchi N, Kihara S. et al. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ Res 2004; 94: e27-e31
  • 60 Shibata R, Sato K, Pimentel DR. et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med 2005; 11: 1096-1103
  • 61 Arita Y, Kihara S, Ouchi N. et al. Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell. Circulation 2002; 105: 2893-2898
  • 62 Kubota N, Terauchi Y, Yamauchi T. et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem 2002; 277: 25863-25866
  • 63 Matsuda M, Shimomura I, Sata M. et al. Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis. J Biol Chem 2002; 277: 37487-37491
  • 64 Ouchi N, Ohishi M, Kihara S. et al. Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension 2003; 42: 231-234
  • 65 Shibata R, Ouchi N, Kihara S. et al. Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of amp-activated protein kinase signaling. J Biol Chem 2004; 279: 28670-28674
  • 66 Okamoto Y, Kihara S, Ouchi N. et al. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 2002; 106: 2767-2770
  • 67 Ouchi N, Shibata R, Walsh K. Cardioprotection by Adiponectin. Trends Cardiovasc Med 2006; 16: 141-146
  • 68 Fasshauer M, Kralisch S, Klier M. et al. Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2003; 301: 1045-1050
  • 69 Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of Cellular Senescence. Trends Cell Biol 2018; 28: 436-453
  • 70 Nerstedt A, Smith U. The impact of cellular senescence in human adipose tissue. J Cell Commun Signal 2023; 17: 563-573
  • 71 Sawaki D, Czibik G, Pini M. et al. Visceral Adipose Tissue Drives Cardiac Aging Through Modulation of Fibroblast Senescence by Osteopontin Production. Circulation 2018; 138: 809-822
  • 72 Venteclef N, Guglielmi V, Balse E. et al. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur Heart J 2015; 36: 795-805a
  • 73 Chang HX, Zhao XJ, Zhu QL. et al. Removal of epicardial adipose tissue after myocardial infarction improves cardiac function. Herz 2018; 43: 258-264
  • 74 Jiang DS, Zeng HL, Li R. et al. Aberrant Epicardial Adipose Tissue Extracellular Matrix Remodeling in Patients with Severe Ischemic Cardiomyopathy: Insight from Comparative Quantitative Proteomics. Sci Rep 2017; 7: 43787
  • 75 Ou MY, Zhang H, Tan PC. et al. Adipose tissue aging: mechanisms and therapeutic implications. Cell Death Dis 2022; 13: 300
  • 76 Pini M, Czibik G, Sawaki D. et al. Adipose tissue senescence is mediated by increased ATP content after a short-term high-fat diet exposure. Aging Cell 2021; 20: e13421
  • 77 Dębiński M, Buszman PP, Milewski K. et al. Intracoronary adiponectin at reperfusion reduces infarct size in a porcine myocardial infarction model. Int J Mol Med 2011; 27: 775-781
  • 78 Grymyr LMD, Nadirpour S, Gerdts E. et al. One-year impact of bariatric surgery on left ventricular mechanics: results from the prospective FatWest study. Eur Heart J Open 2021; 1: oeab024
  • 79 Salvatore T, Galiero R, Caturano A. et al. Dysregulated Epicardial Adipose Tissue as a Risk Factor and Potential Therapeutic Target of Heart Failure with Preserved Ejection Fraction in Diabetes. Biomolecules 2022; 12: 176
  • 80 Sato T, Aizawa Y, Yuasa S. et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc Diabetol 2018; 17: 6
  • 81 Iacobellis G, Gra-Menendez S. Effects of Dapagliflozin on Epicardial Fat Thickness in Patients with Type 2 Diabetes and Obesity. Obesity (Silver Spring) 2020; 28: 1068-1074