Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000032.xml
Klinische Neurophysiologie 2024; 55(03): 186-189
DOI: 10.1055/a-2289-9422
DOI: 10.1055/a-2289-9422
Stipendiaten der DGKN
Multi-Scale-Charakterisierung von Bewegungs-vorbereitender und Bewegungs-assoziierter Aktivität im motorischen Thalamus von Patienten mit Bewegungsstörungen
Erfahrungsbericht – Förderung Auslandsaufenthalt als Gastwissenschaftlerin an der MRC Brain Networks Dynamics Unit, University of Oxford, United Kingdom
Publication History
Article published online:
09 September 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Benabid AL, Pollak P, Gervason C. et al. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 1991; 337: 403-406
- 2 Huss DS, Dallapiazza RF, Shah BB. et al. Functional assessment and quality of life in essential tremor with bilateral or unilateral DBS and focused ultrasound thalamotomy. Mov Disord 2015; 30: 1937-1943
- 3 Giordano M, Caccavella VM, Zaed I. et al. Comparison between deep brain stimulation and magnetic resonance-guided focused ultrasound in the treatment of essential tremor: a systematic review and pooled analysis of functional outcomes. J Neurol Neurosurg Psychiatry 2020; 91: 1270-1278
- 4 Little S, Brown P. What brain signals are suitable for feedback control of deep brain stimulation in Parkinson's disease?. Ann N Y Acad Sci 2012; 1265: 9-24
- 5 Little S, Pogosyan A, Neal S. et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol 2013; 74: 449-457
- 6 Little S, Tripoliti E, Beudel M. et al. Adaptive deep brain stimulation for Parkinson's disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting. J Neurol Neurosurg Psychiatry 2016; 87: 1388-1389
- 7 Holt AB, Kormann E, Gulberti A. Phase-Dependent Suppression of Beta Oscillations in Parkinson's Disease Patients. J Neurosci 2019; 39: 1119-1134
- 8 Cagnan H, Brittain JS, Little S. et al. Phase dependent modulation of tremor amplitude in essential tremor through thalamic stimulation. Brain 2013; 136: 3062-3075
- 9 Cagnan H, Pedrosa D, Little S. et al. Stimulating at the right time: phase-specific deep brain stimulation. Brain 2017; 140: 132-145
- 10 Ueki A, Uno M, Anderson M. et al. Monosynaptic inhibition of thalamic neurons produced by stimulation of the substantia nigra. Experientia 1977; 33: 1480-1482
- 11 Yamamoto T, Noda T, Miyata M. at al Electrophysiological and morphological studies on thalamic neurons receiving entopedunculo- and cerebello-thalamic projections in the cat. Brain Res 1984; 301: 231-242
- 12 Angaut P, Cicirata F, Serapide F. 1985; Topographic Organization of the Cerebello-Thalamic Projections in the Rat – an Autoradiographic Study. Neuroscience 15: 389-401
- 13 Nambu A, Yoshida S, Jinnai K. 1988; Projection on the motor cortex of thalamic neurons with pallidal input in the monkey. Exp Brain Res 71: 658-662
- 14 Nambu A, Yoshida S, Jinnai K. Movement-related activity of thalamic neurons with input from the globus pallidus and projection to the motor cortex in the monkey. Exp Brain Res 1991; 84: 279-284
- 15 Deniau JM, Kita H, Kitai ST. Patterns of Termination of Cerebellar and Basal Ganglia Efferents in the Rat Thalamus – Strictly Segregated and Partly Overlapping Projections. Neurosci Lett 1992; 144: 202-206
- 16 Sakai ST, Grofova I, Bruce K. Nigrothalamic projections and nigrothalamocortical pathway to the medial agranular cortex in the rat: single- and double-labeling light and electron microscopic studies. J Comp Neurol 1998; 391: 506-525
- 17 Bodor AL, Giber K, Rovo Z. et al. Structural correlates of efficient GABAergic transmission in the basal ganglia-thalamus pathway. J Neurosci 2008; 28: 3090-3102
- 18 Kuramoto E, Furuta T, Nakamura KC. et al. Two types of thalamocortical projections from the motor thalamic nuclei of the rat: a single neuron-tracing study using viral vectors. Cereb Cortex 2009; 19: 2065-2077
- 19 Bosch-Bouju C, Hyland BI. et al. Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions. Front Comput Neurosci 2013; 7: 163
- 20 Nakamura KC, Sharott A, Magill PJ. Temporal coupling with cortex distinguishes spontaneous neuronal activities in identified basal ganglia-recipient and cerebellar-recipient zones of the motor thalamus. Cereb Cortex 2014; 24: 81-97
- 21 Hassler R. [Anatomy of the thalamus]. Arch Psychiatr Nervenkr Z Gesamte Neurol Psychiatr 1950; 184: 249-256
- 22 Inagaki HK, Chen S, Ridder MC. et al. A midbrain-thalamus-cortex circuit reorganizes cortical dynamics to initiate movement. Cell 2022; 185: 1065-1081 e1023
- 23 Tanji J, Evarts EV. Anticipatory activity of motor cortex neurons in relation to direction of an intended movement. J Neurophysiol 1976; 39: 1062-1068
- 24 Kurata K. Activity properties and location of neurons in the motor thalamus that project to the cortical motor areas in monkeys. J Neurophysiol 2005; 94: 550-566
- 25 Tanaka M. Cognitive signals in the primate motor thalamus predict saccade timing. J Neurosci 2007; 27: 12109-12118
- 26 Shenoy KV, Sahani M, Churchland MM. Cortical control of arm movements: a dynamical systems perspective. Annu Rev Neurosci 2013; 36: 337-359
- 27 Guo ZV, Inagaki HK, Daie K. et al. Maintenance of persistent activity in a frontal thalamocortical loop. Nature 2017; 545: 181-186
- 28 Guo K, Yamawaki N, Svoboda K. et al. Anterolateral Motor Cortex Connects with a Medial Subdivision of Ventromedial Thalamus through Cell Type-Specific Circuits, Forming an Excitatory Thalamo-Cortico-Thalamic Loop via Layer 1 Apical Tuft Dendrites of Layer 5B Pyramidal Tract Type Neurons. J Neurosci 2018; 38: 8787-8797
- 29 Svoboda K, Li N. Neural mechanisms of movement planning: motor cortex and beyond. Curr Opin Neurobiol 2018; 49: 33-41
- 30 Guo ZV, Li N, Huber D. et al. Flow of cortical activity underlying a tactile decision in mice. Neuron 2014; 81: 179-194
- 31 Kaufman MT, Churchland MM, Ryu SI. at al Cortical activity in the null space: permitting preparation without movement. Nat Neurosci 2014; 17: 440-448
- 32 Kaufman MT, Seely JS, Sussillo D. et al. The Largest Response Component in the Motor Cortex Reflects Movement Timing but Not Movement Type. eNeuro. 2016 3.
- 33 Gaidica M, Hurst A, Cyr C. et al. Distinct Populations of Motor Thalamic Neurons Encode Action Initiation, Action Selection, and Movement Vigor. J Neurosci 2018; 38: 6563-6573
- 34 Strick PL. Activity of ventrolateral thalamic neurons during arm movement. J Neurophysiol 1976; 39: 1032-1044
- 35 Butler EG, Horne MK, Churchward PR. A frequency analysis of neuronal activity in monkey thalamus, motor cortex and electromyograms in wrist oscillations. J Physiol 1992; 445: 49-68
- 36 Georgopoulos AP, Kalaska JF, Caminiti R. et al. On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 1982; 2: 1527-1537
- 37 Kalaska JF, Caminiti R, Georgopoulos AP. Cortical mechanisms related to the direction of two-dimensional arm movements: relations in parietal area 5 and comparison with motor cortex. Exp Brain Res 1983; 51: 247-260
- 38 Georgopoulos AP, Schwartz AB, Kettner RE. Neuronal population coding of movement direction. Science 1986; 233: 1416-1419
- 39 Georgopoulos AP. Neural integration of movement: role of motor cortex in reaching. FASEB J 1988; 2: 2849-2857
- 40 Kalaska JF, Cohen DA, Hyde ML. et al. 1989; A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task. J Neurosci 9: 2080-2102
- 41 Moran DW, Schwartz AB. Motor cortical representation of speed and direction during reaching. J Neurophysiol 1999; 82: 2676-2692
- 42 Quallo MM, Kraskov A, Lemon RN. The activity of primary motor cortex corticospinal neurons during tool use by macaque monkeys. J Neurosci 2012; 32: 17351-17364
- 43 Intveld RW, Dann B, Michaels JA. et al. Neural coding of intended and executed grasp force in macaque areas AIP, F5, and M1. Sci Rep 2018; 8: 17985
- 44 Moran A, Bergman H, Israel Z. et al. Subthalamic nucleus functional organization revealed by parkinsonian neuronal oscillations and synchrony. Brain 2008; 131: 3395-3409
- 45 Sharott A, Vinciati F, Nakamura KC. et al. A Population of Indirect Pathway Striatal Projection Neurons Is Selectively Entrained to Parkinsonian Beta Oscillations. J Neurosci 2017; 37: 9977-9998