CC BY 4.0 · TH Open 2024; 08(01): e96-e105
DOI: 10.1055/a-2247-9438
Original Article

Development of the Integrated Computer Simulation Model of the Intracellular, Transmembrane, and Extracellular Domain of Platelet Integrin αIIbβ3 (Platelet Membrane Glycoprotein: GPIIb–IIIa)

Masamitsu Nakayama
1   Department of Medicine (Cardiology), Tokai University School of Medicine, Isehara, Japan
,
Shinichi Goto*
1   Department of Medicine (Cardiology), Tokai University School of Medicine, Isehara, Japan
,
1   Department of Medicine (Cardiology), Tokai University School of Medicine, Isehara, Japan
› Institutsangaben
Funding This work was funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan Society for the Promotion of Science, Kakenhi19H03661.


Abstract

Background The structure and functions of the extracellular domain of platelet integrin αIIbβ3 (platelet membrane glycoprotein: GPIIb–IIIa) change substantially upon platelet activation. However, the stability of the integrated model of extracellular/transmembrane/intracellular domains of integrin αIIbβ3 with the inactive state of the extracellular domain has not been clarified.

Methods The integrated model of integrin αIIbβ3 was developed by combining the extracellular domain adopted from the crystal structure and the transmembrane and intracellular domain obtained by Nuclear Magnetic Resonace (NMR). The transmembrane domain was settled into the phosphatidylcholine (2-oleoyl-1-palmitoyl-sn-glycerol-3-phosphocholine (POPC)) lipid bilayer model. The position coordinates and velocity vectors of all atoms and water molecules around them were calculated by molecular dynamic (MD) simulation with the use of Chemistry at Harvard Macromolecular Mechanics force field in every 2 × 10−15 seconds.

Results The root-mean-square deviations (RMSDs) of atoms constructing the integrated αIIbβ3 model apparently stabilized at approximately 23 Å after 200 ns of calculation. However, minor fluctuation persisted during the entire calculation period of 650 ns. The RMSDs of both αIIb and β3 showed similar trends before 200 ns. The RMSD of β3 apparently stabilized approximately at 15 Å at 400 ns with persisting minor fluctuation afterward, while the structural fluctuation in αIIb persisted throughout the 650 ns calculation period.

Conclusion In conclusion, the integrated model of the intracellular, transmembrane, and extracellular domain of integrin αIIbβ3 suggested persisting fluctuation even after convergence of MD calculation.

* The contribution of Shinichi Goto on this paper is equal to Masamitsu Nakayama.




Publikationsverlauf

Eingereicht: 11. Mai 2023

Angenommen: 04. Januar 2024

Accepted Manuscript online:
17. Januar 2024

Artikel online veröffentlicht:
29. Februar 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Coller BS, Shattil SJ. The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend. Blood 2008; 112 (08) 3011-3025
  • 2 Nurden AT, Pillois X, Wilcox DA. Glanzmann thrombasthenia: state of the art and future directions. In: Seminars in thrombosis and hemostasis. Thieme Medical Publishers; 2013: 642-655
  • 3 Curtis BR. Recent progress in understanding the pathogenesis of fetal and neonatal alloimmune thrombocytopenia. Br J Haematol 2015; 171 (05) 671-682
  • 4 Topol EJ, Byzova TV, Plow EF. Platelet GPIIb-IIIa blockers. Lancet 1999; 353 (9148) 227-231
  • 5 Tozer EC, Liddington RC, Sutcliffe MJ, Smeeton AH, Loftus JC. Ligand binding to integrin alphaIIbbeta3 is dependent on a MIDAS-like domain in the beta3 subunit. J Biol Chem 1996; 271 (36) 21978-21984
  • 6 Bajt ML, Loftus JC. Mutation of a ligand binding domain of beta 3 integrin. Integral role of oxygenated residues in alpha IIb beta 3 (GPIIb-IIIa) receptor function. J Biol Chem 1994; 269 (33) 20913-20919
  • 7 Xiao T, Takagi J, Coller BS, Wang JH, Springer TA. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 2004; 432 (7013) 59-67
  • 8 Wegener KL, Partridge AW, Han J. et al. Structural basis of integrin activation by talin. Cell 2007; 128 (01) 171-182
  • 9 Chrzanowska-Wodnicka M, Smyth SS, Schoenwaelder SM, Fischer TH, White II GC. Rap1b is required for normal platelet function and hemostasis in mice. J Clin Invest 2005; 115 (03) 680-687
  • 10 Moser M, Nieswandt B, Ussar S, Pozgajova M, Fässler R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med 2008; 14 (03) 325-330
  • 11 Ma YQ, Qin J, Wu C, Plow EF. Kindlin-2 (Mig-2): a co-activator of beta3 integrins. J Cell Biol 2008; 181 (03) 439-446
  • 12 Tong D, Soley N, Kolasangiani R, Schwartz MA, Bidone TC. Integrin αIIbβ3 intermediates: from molecular dynamics to adhesion assembly. Biophys J 2023; 122 (03) 533-543
  • 13 Karplus M, McCammon JA. Molecular dynamics simulations of biomolecules. Nat Struct Biol 2002; 9 (09) 646-652
  • 14 Karplus M, Petsko GA. Molecular dynamics simulations in biology. Nature 1990; 347 (6294) 631-639
  • 15 Karplus M, Kuriyan J. Molecular dynamics and protein function. Proc Natl Acad Sci U S A 2005; 102 (19) 6679-6685
  • 16 Kozono D, Yasui M, King LS, Agre P. Aquaporin water channels: atomic structure molecular dynamics meet clinical medicine. J Clin Invest 2002; 109 (11) 1395-1399
  • 17 Hub JS, Grubmüller H, de Groot BL. Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations?. Handb Exp Pharmacol 2009; (190) 57-76
  • 18 Savage B, Saldívar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 1996; 84 (02) 289-297
  • 19 Goto S, Ikeda Y, Saldívar E, Ruggeri ZM. Distinct mechanisms of platelet aggregation as a consequence of different shearing flow conditions. J Clin Invest 1998; 101 (02) 479-486
  • 20 Shiozaki S, Takagi S, Goto S. Prediction of molecular interaction between platelet glycoprotein Ibα and von Willebrand factor using molecular dynamics simulations. J Atheroscler Thromb 2016; 23 (04) 455-464
  • 21 Goto S, Oka H, Ayabe K. et al. Prediction of binding characteristics between von Willebrand factor and platelet glycoprotein Ibα with various mutations by molecular dynamic simulation. Thromb Res 2019; 184: 129-135
  • 22 Haas TA, Plow EF. Development of a structural model for the cytoplasmic domain of an integrin. Protein Eng 1997; 10 (12) 1395-1405
  • 23 Goguet M, Narwani TJ, Petermann R, Jallu V, de Brevern AG. In silico analysis of Glanzmann variants of Calf-1 domain of αIIbβ3 integrin revealed dynamic allosteric effect. Sci Rep 2017; 7 (01) 8001
  • 24 Jallu V, Poulain P, Fuchs PF, Kaplan C, de Brevern AG. Modeling and molecular dynamics simulations of the V33 variant of the integrin subunit β3: Structural comparison with the L33 (HPA-1a) and P33 (HPA-1b) variants. Biochimie 2014; 105: 84-90
  • 25 Zhu J, Luo BH, Xiao T, Zhang C, Nishida N, Springer TA. Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. Mol Cell 2008; 32 (06) 849-861
  • 26 Lentz BR. Exposure of platelet membrane phosphatidylserine regulates blood coagulation. Prog Lipid Res 2003; 42 (05) 423-438
  • 27 Janosi L, Gorfe AA. Simulating POPC and POPC/POPG bilayers: conserved packing and altered surface reactivity. J Chem Theory Comput 2010; 6 (10) 3267-3273
  • 28 Roka-Moiia Y, Walk R, Palomares DE. et al. Platelet activation via shear stress exposure induces a differing pattern of biomarkers of activation versus biochemical agonists. Thromb Haemost 2020; 120 (05) 776-792
  • 29 Yang J, Ma Y-Q, Page RC, Misra S, Plow EF, Qin J. Structure of an integrin alphaIIb beta3 transmembrane-cytoplasmic heterocomplex provides insight into integrin activation. Proc Natl Acad Sci U S A 2009; 106 (42) 17729-17734
  • 30 Adair BD, Yeager M. Three-dimensional model of the human platelet integrin alpha IIbbeta 3 based on electron cryomicroscopy and x-ray crystallography. Proc Natl Acad Sci U S A 2002; 99 (22) 14059-14064
  • 31 Boonstra S, Onck PR, Giessen Ev. CHARMM TIP3P water model suppresses peptide folding by solvating the unfolded state. J Phys Chem B 2016; 120 (15) 3692-3698
  • 32 Wang L, O'Mara ML. Effect of the force field on molecular dynamics simulations of the multidrug efflux protein P-glycoprotein. J Chem Theory Comput 2021; 17 (10) 6491-6508
  • 33 Janowski PA, Liu C, Deckman J, Case DA. Molecular dynamics simulation of triclinic lysozyme in a crystal lattice. Protein Sci 2016; 25 (01) 87-102
  • 34 Takagi J, Petre BM, Walz T, Springer TA. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 2002; 110 (05) 599-511
  • 35 D'Souza SE, Ginsberg MH, Burke TA, Plow EF. The ligand binding site of the platelet integrin receptor GPIIb-IIIa is proximal to the second calcium binding domain of its alpha subunit. J Biol Chem 1990; 265 (06) 3440-3446
  • 36 Zhu J, Choi W-S, McCoy JG. et al. Structure-guided design of a high-affinity platelet integrin αIIbβ3 receptor antagonist that disrupts Mg2+ binding to the MIDAS. Sci Transl Med 2012; 4 (125) 125ra32
  • 37 Goto S, Tamura N, Ishida H, Ruggeri ZM. Dependence of platelet thrombus stability on sustained glycoprotein IIb/IIIa activation through adenosine 5′-diphosphate receptor stimulation and cyclic calcium signaling. J Am Coll Cardiol 2006; 47 (01) 155-162
  • 38 Rahman A, Stillinger FH. Molecular dynamics study of liquid water. J Chem Phys 1971; 55: 3336-3359
  • 39 Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE. Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struct Biol 2009; 19 (02) 120-127
  • 40 Marrink S-J, Berendsen HJ. Simulation of water transport through a lipid membrane. J Phys Chem 1994; 98: 4155-4168
  • 41 Amiry-Moghaddam M, Ottersen OP. The molecular basis of water transport in the brain. Nat Rev Neurosci 2003; 4 (12) 991-1001
  • 42 Interlandi G, Thomas W. The catch bond mechanism between von Willebrand factor and platelet surface receptors investigated by molecular dynamics simulations. Proteins 2010; 78 (11) 2506-2522
  • 43 Tamura N, Goto S, Yokota H, Goto S. Contributing role of mitochondrial energy metabolism on platelet adhesion, activation and thrombus formation under blood flow conditions. Platelets 2022; 33 (07) 1083-1089
  • 44 Nieswandt B, Moser M, Pleines I. et al. Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. J Exp Med 2007; 204 (13) 3113-3118
  • 45 Petrich BG, Marchese P, Ruggeri ZM. et al. Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. J Exp Med 2007; 204 (13) 3103-3111
  • 46 Moriarty R, McManus CA, Lambert M. et al. A novel role for the fibrinogen Asn-Gly-Arg (NGR) motif in platelet function. Thromb Haemost 2015; 113 (02) 290-304
  • 47 Xiong JP, Stehle T, Diefenbach B. et al. Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science 2001; 294 (5541) 339-345
  • 48 Lau TL, Dua V, Ulmer TS. Structure of the integrin alphaIIb transmembrane segment. J Biol Chem 2008; 283 (23) 16162-16168
  • 49 O'Toole TE, Mandelman D, Forsyth J, Shattil SJ, Plow EF, Ginsberg MH. Modulation of the affinity of integrin α IIb β 3 (GPIIb-IIIa) by the cytoplasmic domain of α IIb. Science 1991; 254 (5033) 845-847
  • 50 Zhu J, Luo B-H, Barth P, Schonbrun J, Baker D, Springer TA. The structure of a receptor with two associating transmembrane domains on the cell surface: integrin alphaIIbbeta3. Mol Cell 2009; 34 (02) 234-249
  • 51 van Kruchten R, Mattheij NJ, Saunders C. et al. Both TMEM16F-dependent and TMEM16F-independent pathways contribute to phosphatidylserine exposure in platelet apoptosis and platelet activation. Blood 2013; 121 (10) 1850-1857
  • 52 Ulmer TS, Calderwood DA, Ginsberg MH, Campbell ID. Domain-specific interactions of talin with the membrane-proximal region of the integrin beta3 subunit. Biochemistry 2003; 42 (27) 8307-8312
  • 53 Haas TA, Plow EF. The cytoplasmic domain of alphaIIb beta3. A ternary complex of the integrin alpha and beta subunits and a divalent cation. J Biol Chem 1996; 271 (11) 6017-6026
  • 54 Kufareva I, Abagyan R. Methods of protein structure comparison. In: Homology modeling. Springer; 2011: 231-257