Horm Metab Res 2024; 56(04): 261-271
DOI: 10.1055/a-2239-2668

Preservation of β-Cells as a Therapeutic Strategy for Diabetes

1   College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
2   Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
Maha M. Saber-Ayad
1   College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
2   Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
› Author Affiliations


The preservation of pancreatic islet β-cells is crucial in diabetes mellitus, encompassing both type 1 and type 2 diabetes. β-cell dysfunction, reduced mass, and apoptosis are central to insufficient insulin secretion in both types. Research is focused on understanding β-cell characteristics and the factors regulating their function to develop novel therapeutic approaches. In type 1 diabetes (T1D), β-cell destruction by the immune system calls for exploring immunosuppressive therapies, non-steroidal anti-inflammatory drugs, and leukotriene antagonists. Islet transplantation, stem cell therapy, and xenogeneic transplantation offer promising strategies for type 1 diabetes treatment. For type 2 diabetes (T2D), lifestyle changes like weight loss and exercise enhance insulin sensitivity and maintain β-cell function. Additionally, various pharmacological approaches, such as cytokine inhibitors and protein kinase inhibitors, are being investigated to protect β-cells from inflammation and glucotoxicity. Bariatric surgery emerges as an effective treatment for obesity and T2D by promoting β-cell survival and function. It improves insulin sensitivity, modulates gut hormones, and expands β-cell mass, leading to diabetes remission and better glycemic control. In conclusion, preserving β-cells offers a promising approach to managing both types of diabetes. By combining lifestyle modifications, targeted pharmacological interventions, and advanced therapies like stem cell transplantation and bariatric surgery, we have a significant chance to preserve β-cell function and enhance glucose regulation in diabetic patients.

Publication History

Received: 02 August 2023

Accepted: 07 December 2023

Article published online:
22 February 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

  • 1 Galicia-Garcia U, Benito-Vicente A, Jebari S. et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 2020; 21: 6275
  • 2 Khin P-P, Lee J-H, Jun H-S. A brief review of the mechanisms of β-cell dedifferentiation in type 2 diabetes 2021; 13: 1593
  • 3 Son J, Accili D. Reversing pancreatic β-cell dedifferentiation in the treatment of type 2 diabetes. Exp Mol Med 2023; 55: 1652-1658
  • 4 Dludla PV, Mabhida SE, Ziqubu K. et al. Pancreatic β-cell dysfunction in type 2 diabetes: implications of inflammation and oxidative stress. World J Diabetes 2023; 14: 130-146
  • 5 Gerst F, Wagner R, Oquendo MB. et al. What role do fat cells play in pancreatic tissue?. Mol Metab 2019; 25: 1-10
  • 6 Kozawa J, Shimomura I. Ectopic fat accumulation in pancreas and heart. J Clin Med 2021; 10: 1326
  • 7 Snel M, Jonker JT, Schoones J. et al. Ectopic fat and insulin resistance: pathophysiology and effect of diet and lifestyle interventions. Int J Endocrinol 2012; 983814
  • 8 Makhmutova M, Caicedo A. Optical imaging of pancreatic innervation. Front Endocrinol (Lausanne) 2021; 12: 663022
  • 9 Cinti F, Mezza T, Severi I. et al. Noradrenergic fibers are associated with beta-cell dedifferentiation and impaired beta-cell function in humans. Metabolism 2021; 114: 154414
  • 10 Hampton RF, Jimenez-Gonzalez M, Stanley SA. Unravelling innervation of pancreatic islets. Diabetologia 2022; 65: 1069-1084
  • 11 Skyler JS, Rabinovitch A. Cyclosporine in recent onset type I diabetes mellitus. Effects on islet beta cell function. Miami Cyclosporine Diabetes Study Group. J Diabetes Complicat 1992; 6: 77-88
  • 12 Li J, Zhang N, Ye B. et al. Non-steroidal anti-inflammatory drugs increase insulin release from beta cells by inhibiting ATP-sensitive potassium channels. Br J Pharmacol 2007; 151: 483-493
  • 13 Bäck M, Avignon A, Stanke-Labesque F. et al. Leukotriene production is increased in abdominal obesity. PloS One 2014; 9: e104593
  • 14 Neels JG. A role for 5-lipoxygenase products in obesity-associated inflammation and insulin resistance. Adipocyte 2013; 2: 262-265
  • 15 Rådmark O, Werz O, Steinhilber D. et al. 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim Biophys Acta 2015; 1851: 331-339
  • 16 Guo R, Jiang J, Jing Z. et al. Cysteinyl leukotriene receptor 1 regulates glucose-stimulated insulin secretion (GSIS). Cell Signal 2018; 46: 129-134
  • 17 El-Alali EA, Abukhiran IM, Alhmoud TZ. Successful use of montelukast in eosinophilic gastroenteritis: a case report and a literature review. BMC Gastroenterol 2021; 21: 279
  • 18 Abdallah MS, Eldeen AH, Tantawy SS. et al. The leukotriene receptor antagonist montelukast in the treatment of non-alcoholic steatohepatitis: a proof-of-concept, randomized, double-blind, placebo-controlled trial. Eur J Pharmacol 2021; 906: 174295
  • 19 Hoxha M, Tedesco CC, Quaglin S. et al. Montelukast use decreases cardiovascular events in asthmatics. Front Pharmacol 2020; 11: 611561
  • 20 Khan AR, Misdary C, Yegya-Raman N. et al. Montelukast in hospitalized patients diagnosed with COVID-19. J Asthma 2022; 59: 780-786
  • 21 Bertuzzi F, Colussi G, Lauterio A. et al. Intramuscular islet allotransplantation in type 1 diabetes mellitus. Eur Rev Med Pharmacol Sci 2018; 22: 1731-1736
  • 22 Nijhoff MF, Dubbeld J, van Erkel AR. et al. Islet alloautotransplantation: allogeneic pancreas transplantation followed by transplant pancreatectomy and islet transplantation. Am J Transpl 2018; 18: 1016-1019
  • 23 Robertson RP. Total pancreatectomy and islet autotransplantation for chronic pancreatitis: breaking down barriers. J Clin Endocrinol Metab 2015; 100: 1762-1763
  • 24 Carlsson PO, Espes D, Sedigh A. et al. Transplantation of macroencapsulated human islets within the bioartificial pancreas βAir to patients with type 1 diabetes mellitus. Am J Ttranspl 2018; 18: 1735-1744
  • 25 Rickels MR, Robertson RP. Pancreatic islet transplantation in humans: recent progress and future directions. Endocr Rev 2018; 40: 631-668
  • 26 D’Amour KA, Bang AG, Eliazer S. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 2006; 24: 1392-1401
  • 27 Sui L, Danzl N, Campbell SR. et al. β-Cell replacement in mice using human type 1 diabetes nuclear transfer embryonic stem cells. Diabetes 2018; 67: 26-35
  • 28 Maxwell KG, Augsornworawat P, Velazco-Cruz L. et al. Gene-edited human stem cell-derived β cells from a patient with monogenic diabetes reverse preexisting diabetes in mice. Sci Transl Med 2020; 12: eaax9106
  • 29 Jun HS, Park EY. Adult stem cells as a renewable source of insulin-producing cells. Int J Stem Cells 2009; 2: 115-121
  • 30 Wang KL, Tao M, Wei TJ. et al. Pancreatic β cell regeneration induced by clinical and preclinical agents. World J Stem Cells 2021; 13: 64-77
  • 31 Krishnan R, Alexander M, Robles L. et al. Islet and stem cell encapsulation for clinical transplantation. Rev Diabetic Studies 2014; 11: 84-101
  • 32 Pellegrini S, Zamarian V, Sordi V. Strategies to improve the safety of iPSC-derived β cells for β cell replacement in diabetes. Transpl Int 2022; 35: 10575
  • 33 Knowler WC, Barrett-Connor E, Fowler SE. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Eng J Med 2002; 346: 393-403
  • 34 Tuomilehto J, Lindström J, Eriksson JG. et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Eng J Med 2001; 344: 1343-1350
  • 35 Mandrup-Poulsen T. Interleukin-1 antagonists and other cytokine blockade strategies for type 1 diabetes. Rev Diabetic Studies 2012; 9: 338-347
  • 36 Everett BM, Donath MY, Pradhan AD. et al. Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. 2018; 71: 2392-2401
  • 37 Sahraoui A, Kloster-Jensen K, Ueland T. et al. Anakinra and tocilizumab enhance survival and function of human islets during culture: implications for clinical islet transplantation. Cell Transpl 2014; 23: 1199-1211
  • 38 El-Khateeb E, El-Berri EI, Mosalam EM. et al. Evaluating the safety and efficacy of the leukotriene receptor antagonist montelukast as adjuvant therapy in obese patients with type 2 diabetes mellitus: A double-blind, randomized, placebo-controlled trial. Front Pharmacol 2023; 14: 1153653
  • 39 Moran A, Bundy B, Becker DJ. et al. Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials. Lancet (London, England) 2013; 381: 1905-1915
  • 40 Jörns A, Ertekin ÜG, Arndt T. et al. TNF-α antibody therapy in combination with the T-cell-specific antibody anti-TCR reverses the diabetic metabolic state in the LEW.1AR1-iddm Rat. Diabetes 2015; 64: 2880-2891
  • 41 Trotta E, Bessette PH, Silveria SL. et al. A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat Med 2018; 24: 1005-1014
  • 42 von Herrath M, Bain SC, Bode B. et al. Anti-interleukin-21 antibody and liraglutide for the preservation of β-cell function in adults with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol 2021; 9: 212-224
  • 43 Jörns A, Akin M, Arndt T. et al. Anti-TCR therapy combined with fingolimod for reversal of diabetic hyperglycemia by β cell regeneration in the LEW.1AR1-iddm rat model of type 1 diabetes. J Mol Med (Berlin, Germany) 2014; 92: 743-755
  • 44 Cao H, Lu J, Du J. et al. TAK1 inhibition prevents the development of autoimmune diabetes in NOD mice. Sci Rep 2015; 5: 14593
  • 45 Hägerkvist R, Sandler S, Mokhtari D. et al. Amelioration of diabetes by imatinib mesylate (Gleevec): role of beta-cell NF-kappaB activation and anti-apoptotic preconditioning. FASEB J 2007; 21: 618-628
  • 46 Ardestani A, Paroni F, Azizi Z. et al. MST1 is a key regulator of beta cell apoptosis and dysfunction in diabetes. Nat Med 2014; 20: 385-397
  • 47 Ardestani A, Li S, Annamalai K. et al. Neratinib protects pancreatic beta cells in diabetes. Nat Commun 2019; 10: 5015
  • 48 Hanchang W, Khamchan A, Wongmanee N. et al. Hesperidin ameliorates pancreatic β-cell dysfunction and apoptosis in streptozotocin-induced diabetic rat model. Life Sci 2019; 235: 116858
  • 49 Christensen DP, Gysemans C, Lundh M. et al. Lysine deacetylase inhibition prevents diabetes by chromatin-independent immunoregulation and β-cell protection. Proc Natl Acad Sci U S A 2014; 111: 1055-1059
  • 50 Khan S, Jena GB. Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: study in juvenile diabetic rat. Chem Biol Interact 2014; 213: 1-12
  • 51 Dirice E, Ng RWS, Martinez R. et al. Isoform-selective inhibitor of histone deacetylase 3 (HDAC3) limits pancreatic islet infiltration and protects female nonobese diabetic mice from diabetes. J Biol Chem 2017; 292: 17598-17608
  • 52 Besançon A, Goncalves T, Valette F. et al. Oral histone deacetylase inhibitor synergises with T cell targeted immunotherapy to preserve beta cell metabolic function and induce stable remission of new-onset autoimmune diabetes in NOD mice. Diabetologia 2018; 61: 389-398
  • 53 Cabrera SM, Colvin SC, Tersey SA. et al. Effects of combination therapy with dipeptidyl peptidase-IV and histone deacetylase inhibitors in the non-obese diabetic mouse model of type 1 diabetes. Clin Exp Immunol 2013; 172: 375-382
  • 54 Dalle S, Abderrahmani A, Renard E. Pharmacological inhibitors of β-cell dysfunction and death as therapeutics for diabetes. Front Endocrinol 2023; 14: 1076343
  • 55 Lim YJ, Kim JH, Pan JH. et al Naringin protects pancreatic β-cells against oxidative stress-induced apoptosis by inhibiting both intrinsic and extrinsic pathways in insulin-deficient diabetic mice. Mol Nutr Food Res 2018; 62: 1–10 DOI: 10.1002/mnfr.201700810.. Epub 2018 Feb 5
  • 56 Delangre E, Liu J, Tolu S. et al. Underlying mechanisms of glucocorticoid-induced β-cell death and dysfunction: a new role for glycogen synthase kinase 3. Cell Death Dis 2021; 12: 1136
  • 57 Hoshino A, Ariyoshi M, Okawa Y. et al. Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic β-cell function in diabetes. Proc Natl Acad Sci U S A 2014; 111: 3116-3121
  • 58 Hansen JB, Tonnesen MF, Madsen AN. et al. Divalent metal transporter 1 regulates iron-mediated ROS and pancreatic β cell fate in response to cytokines. Cell Metab 2012; 16: 449-461
  • 59 Ardestani A, Li S, Annamalai K. et al. Neratinib protects pancreatic beta cells in diabetes. Nat Commun 2019; 10: 5015
  • 60 Thielen LA, Chen J, Jing G. et al. Identification of an anti-diabetic, orally available small molecule that regulates TXNIP expression and glucagon action. Cell mMetab 2020; 32: 353-365.e8
  • 61 Hong K, Xu G, Grayson TB. et al. Cytokines regulate β-cell thioredoxin-interacting protein (TXNIP) via distinct mechanisms and pathways. J Biol Chem 2016; 291: 8428-8439
  • 62 Daneshpajooh M, Eliasson L, Bacos K. et al. MC1568 improves insulin secretion in islets from type 2 diabetes patients and rescues β-cell dysfunction caused by Hdac7 upregulation. Acta Diabetol 2018; 55: 1231-1235
  • 63 Zhang Y, Li M, Wang Y. et al. Histone deacetylase inhibition by MS-275 potentiates glucose-stimulated insulin secretion without affecting glucose oxidation. Life Sci 2020; 257: 118073
  • 64 Huang JS, Guo BB, Wang GH. et al. DGAT1 inhibitors protect pancreatic β-cells from palmitic acid-induced apoptosis. Acta Pharmacol Sinica 2021; 42: 264-271
  • 65 Wang Y, Xue J, Li Y. et al. Telmisartan protects against high glucose/high lipid-induced apoptosis and insulin secretion by reducing the oxidative and ER stress. Cell Biochem Function 2019; 37: 161-168
  • 66 Zhao S, Chan LK, Chen L. et al. Combination of telmisartan and linagliptin preserves pancreatic islet cell function and morphology in db/db mice. Pancreas 2016; 45: 584-592
  • 67 Gómez-Banoy N, Guseh JS, Li G. et al. Adipsin preserves beta cells in diabetic mice and associates with protection from type 2 diabetes in humans. Nat Med 2019; 25: 1739-1747
  • 68 Wei Z, Yoshihara E, He N. et al. Vitamin D switches BAF complexes to protect β cells. Cell 2018; 173: 1135-1149.e15
  • 69 Jorde R, Sollid ST, Svartberg J. et al. Vitamin D 20,000 IU per week for five years does not prevent progression from prediabetes to diabetes. J clin Endocrinol Metab 2016; 101: 1647-1655
  • 70 Kawahara T, Suzuki G, Mizuno S. et al. Effect of active vitamin D treatment on development of type 2 diabetes: DPVD randomised controlled trial in Japanese population. BMJ (Clinical research ed). 2022. 377. e066222
  • 71 Zhang E, Mohammed Al-Amily I, Mohammed S. et al. Preserving insulin secretion in diabetes by inhibiting VDAC1 overexpression and surface translocation in β cells. Cell Metab 2019; 29: 64-77.e6
  • 72 Ueberberg S, Nauck MA, Uhl W. et al. Islet amyloid in patients with diabetes due to exocrine pancreatic disorders, type 2 diabetes, and nondiabetic patients. J Clin Endocrinol Metab 2020; 105 dgaa176
  • 73 Wijesekara N, Ahrens R, Wu L. et al. Islet amyloid inhibitors improve glucose homeostasis in a transgenic mouse model of type 2 diabetes. Diabetes Obes Metab 2015; 17: 1003-1006
  • 74 Zhang Y, Yu XL, Zhu J. et al. Intravenous immunoglobulin improves glucose control and β-cell function in human IAPP transgenic mice by attenuating islet inflammation and reducing IAPP oligomers. Int Immunopharmacol 2018; 54: 145-152
  • 75 Kim J, Park K, Kim MJ. et al. An autophagy enhancer ameliorates diabetes of human IAPP-transgenic mice through clearance of amyloidogenic oligomer. Nat Commun 2021; 12: 183
  • 76 Rodríguez-Comas J, Moreno-Vedia J, Obach M. et al. Alpha1-antitrypsin ameliorates islet amyloid-induced glucose intolerance and β-cell dysfunction. Mol Metab 2020; 37: 100984
  • 77 Li X, Ma L, Zheng W. et al. Inhibition of islet amyloid polypeptide fibril formation by selenium-containing phycocyanin and prevention of beta cell apoptosis. Biomaterials 2014; 35: 8596-8604
  • 78 Li XL, Wong YS, Xu G. et al. Selenium-enriched spirulina protects INS-1E pancreatic beta cells from human islet amyloid polypeptide-induced apoptosis through suppression of ROS-mediated mitochondrial dysfunction and PI3/AKT pathway. Eur J Nutr 2015; 54: 509-522
  • 79 Thompson PJ, Shah A, Ntranos V. et al. Targeted elimination of senescent beta cells prevents type 1 diabetes. Cell Metab 2019; 29: 1045-1060.e10
  • 80 Wang MY, Dean ED, Quittner-Strom E. et al. Glucagon blockade restores functional β-cell mass in type 1 diabetic mice and enhances function of human islets. Proc Natl Acad Sci U S A 2021; 118: e2022142118
  • 81 Cui X, Feng J, Wei T. et al. Pancreatic alpha cell glucagon-liver FGF21 axis regulates beta cell regeneration in a mouse model of type 2 diabetes. Diabetologia 2023; 66: 535-550
  • 82 Cummings DE, Rubino F. Metabolic surgery for the treatment of type 2 diabetes in obese individuals. Diabetologia 2018; 61: 257-264
  • 83 Holst JJ, Gribble F, Horowitz M. et al. Roles of the gut in glucose homeostasis. Diabetes Care 2016; 39: 884-892
  • 84 Sjöström L, Lindroos AK, Peltonen M. et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Eng J Med 2004; 351: 2683-2693
  • 85 Mingrone G, Panunzi S, De Gaetano A. et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Eng J Med 2012; 366: 1577-1585
  • 86 Patti ME, Houten SM, Bianco AC. et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring, Md) 2009; 17: 1671-1677
  • 87 Dirksen C, Jørgensen NB, Bojsen-Møller KN. et al. Mechanisms of improved glycaemic control after Roux-en-Y gastric bypass. Diabetologia 2012; 55: 1890-1901
  • 88 Shah M, Law JH, Micheletto F. et al. Contribution of endogenous glucagon-like peptide 1 to glucose metabolism after Roux-en-Y gastric bypass. Diabetes 2014; 63: 483-493
  • 89 American Diabetes Association. Obesity management for the treatment of type 2 diabetes: standards of medical care in diabetes-2021. Diabetes Care 2021; 44: S100-S110
  • 90 Sjöström L, Lindroos A-K, Peltonen M. et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med 2004; 351: 2683-2693
  • 91 Taylor R, Irvine KM, Barnes AC. et al 218-LB: Remission of type 2 diabetes after weight loss in “normal” weight people—the ReTUNE study. Diabetes 2022; 71 (Supplement_ 1): 218-LB
  • 92 Taylor R, Barnes AC, Hollingsworth KG. et al. Aetiology of Type 2 diabetes in people with a ‘normal’ body mass index: testing the personal fat threshold hypothesis. Clin Sci (London, England: 1979). 2023. 137. 1333-1346
  • 93 Ikramuddin S, Korner J, Lee WJ. et al. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: the Diabetes Surgery Study randomized clinical trial. JAMA 2013; 309: 2240-2249
  • 94 Lozano R, Naghavi M, Foreman K. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet (London, England) 2012; 380: 2095-2128
  • 95 Schauer PR, Bhatt DL, Kirwan JP. et al. Bariatric surgery versus intensive medical therapy for diabetes — 5-year outcomes 2017; 376: 641-651