Hamostaseologie 2024; 44(01): 013-020
DOI: 10.1055/a-2219-6410
Review Article

Clonal Hematopoiesis and Cardiovascular Risk: Atherosclerosis, Thrombosis, and beyond

Benedetta Izzi
1   Centro Nacional de Investigaciones Cardiovasculares (CNIC). Madrid, Spain
José J. Fuster
1   Centro Nacional de Investigaciones Cardiovasculares (CNIC). Madrid, Spain
2   CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
› Author Affiliations
Funding Research work in our laboratory related to this topic is supported by grant PLEC2021-008194, funded by MCIN/AEI/10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR”; by grant PID2021-126580OB-I00, funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”; and by the “la Caixa” Foundation (ID 100010434) under agreement LCF/PR/HR22/00732. BI is supported by the program Atracción de Talento of the Comunidad de Madrid (GN: 2022-T1/BMD-23767). The CNIC is supported by the MICIN, the Instituto de Salud Carlos III, the Pro-CNIC Foundation, and is a Severo Ochoa Center of Excellence (grant number CEX2020-001041-S).


Acquired mutations that lead to clonal hematopoiesis have emerged as a new and potent risk factor for atherosclerotic cardiovascular disease and other cardiovascular conditions. Human sequencing studies and experiments in mouse models provide compelling evidence supporting that this condition, particularly when driven by specific mutated genes, contributes to the development of atherosclerosis by exacerbating inflammatory responses. The insights gained from these studies are paving the way for the development of new personalized preventive care strategies against cardiovascular disease. Furthermore, available evidence also suggests a potential relevance of these mutation in the context of thrombosis, an area requiring thorough investigation. In this review, we provide an overview of our current understanding of this emerging cardiovascular risk factor, focusing on its relationship to atherosclerosis and thrombosis.

Publication History

Received: 31 October 2023

Accepted: 11 November 2023

Article published online:
28 February 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

  • 1 Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet 2017; 18 (06) 331-344
  • 2 Mustjoki S, Young NS. Somatic mutations in “benign” disease. N Engl J Med 2021; 384 (21) 2039-2052
  • 3 Lee-Six H, Øbro NF, Shepherd MS. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 2018; 561 (7724) 473-478
  • 4 Osorio FG, Rosendahl Huber A, Oka R. et al. Somatic mutations reveal lineage relationships and age-related mutagenesis in human hematopoiesis. Cell Rep 2018; 25 (09) 2308-2316.e4
  • 5 Welch JS, Ley TJ, Link DC. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012; 150 (02) 264-278
  • 6 Fuster JJ, Walsh K. Somatic mutations and clonal hematopoiesis: unexpected potential new drivers of age-related cardiovascular disease. Circ Res 2018; 122 (03) 523-532
  • 7 Jaiswal S, Libby P. Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease. Nat Rev Cardiol 2020; 17 (03) 137-144
  • 8 Zuriaga MA, Fuster JJ. Clonal hematopoiesis and atherosclerotic cardiovascular disease: a primer. Clin Investig Arterioscler 2023; 35 (01) 35-41
  • 9 Steensma DP, Bejar R, Jaiswal S. et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 2015; 126 (01) 9-16
  • 10 Genovese G, Kähler AK, Handsaker RE. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 2014; 371 (26) 2477-2487
  • 11 Jaiswal S, Fontanillas P, Flannick J. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014; 371 (26) 2488-2498
  • 12 McKerrell T, Park N, Moreno T. et al; Understanding Society Scientific Group. Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep 2015; 10 (08) 1239-1245
  • 13 Zink F, Stacey SN, Norddahl GL. et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 2017; 130 (06) 742-752
  • 14 Buscarlet M, Provost S, Zada YF. et al. DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood 2017; 130 (06) 753-762
  • 15 Bick AG, Weinstock JS, Nandakumar SK. et al; NHLBI Trans-Omics for Precision Medicine Consortium. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature 2020; 586 (7831) 763-768
  • 16 Díez-Díez M, Amorós-Pérez M, de la Barrera J. et al. Clonal hematopoiesis is not prevalent in Hutchinson-Gilford progeria syndrome. Geroscience 2023; 45 (02) 1231-1236
  • 17 Libby P, Buring JE, Badimon L. et al. Atherosclerosis. Nat Rev Dis Primers 2019; 5 (01) 56
  • 18 Jaiswal S, Natarajan P, Silver AJ. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 2017; 377 (02) 111-121
  • 19 Zekavat SM, Viana-Huete V, Matesanz N. et al. TP53-mediated clonal hematopoiesis confers increased risk for incident atherosclerotic disease. Nat Cardiovasc Res 2023; 2 (02) 144-158
  • 20 Vlasschaert C, Heimlich JB, Rauh MJ, Natarajan P, Bick AG. Interleukin-6 receptor polymorphism attenuates clonal hematopoiesis-mediated coronary artery disease risk among 451 180 individuals in the UK biobank. Circulation 2023; 147 (04) 358-360
  • 21 Gumuser ED, Schuermans A, Cho SMJ. et al. Clonal hematopoiesis of indeterminate potential predicts adverse outcomes in patients with atherosclerotic cardiovascular disease. J Am Coll Cardiol 2023; 81 (20) 1996-2009
  • 22 Wang S, Hu S, Luo X. et al. Prevalence and prognostic significance of DNMT3A- and TET2- clonal haematopoiesis-driver mutations in patients presenting with ST-segment elevation myocardial infarction. EBioMedicine 2022; 78: 103964
  • 23 Dorsheimer L, Assmus B, Rasper T. et al. Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol 2019; 4 (01) 25-33
  • 24 Assmus B, Cremer S, Kirschbaum K. et al. Clonal haematopoiesis in chronic ischaemic heart failure: prognostic role of clone size for DNMT3A- and TET2-driver gene mutations. Eur Heart J 2021; 42 (03) 257-265
  • 25 Pascual-Figal DA, Bayes-Genis A, Díez-Díez M. et al. Clonal hematopoiesis and risk of progression of heart failure with reduced left ventricular ejection fraction. J Am Coll Cardiol 2021; 77 (14) 1747-1759
  • 26 Kar SP, Quiros PM, Gu M. et al. Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis. Nat Genet 2022; 54 (08) 1155-1166
  • 27 Kessler MD, Damask A, O'Keeffe S. et al; Regeneron Genetics Center, ; GHS-RGC DiscovEHR Collaboration. Common and rare variant associations with clonal haematopoiesis phenotypes. Nature 2022; 612 (7939) 301-309
  • 28 Tall AR, Fuster JJ. Clonal hematopoiesis in cardiovascular disease and therapeutic implications. Nat Cardiovasc Res 2022; 1 (02) 116-124
  • 29 Fidler TP, Xue C, Yalcinkaya M. et al. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 2021; 592 (7853) 296-301
  • 30 Rauch PJ, Gopakumar J, Silver AJ. et al. Loss-of-function mutations in Dnmt3a and Tet2 lead to accelerated atherosclerosis and concordant macrophage phenotypes. Nat Cardiovasc Res 2023; 2: 805-818
  • 31 Fuster JJ, MacLauchlan S, Zuriaga MA. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 2017; 355 (6327) 842-847
  • 32 Cobo I, Tanaka TN, Chandra Mangalhara K. et al. DNA methyltransferase 3 alpha and TET methylcytosine dioxygenase 2 restrain mitochondrial DNA-mediated interferon signaling in macrophages. Immunity 2022; 55 (08) 1386-1401.e10
  • 33 Ampomah PB, Cai B, Sukka SR. et al. Macrophages use apoptotic cell-derived methionine and DNMT3A during efferocytosis to promote tissue resolution. Nat Metab 2022; 4 (04) 444-457
  • 34 Wang W, Liu W, Fidler T. et al. Macrophage inflammation, erythrophagocytosis, and accelerated atherosclerosis in Jak  V617F mice. Circ Res 2018; 123 (11) e35-e47
  • 35 Wolach O, Sellar RS, Martinod K. et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med 2018; 10 (436) eaan8292
  • 36 Silvestre-Roig C, Braster Q, Wichapong K. et al. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature 2019; 569 (7755) 236-240
  • 37 Franck G, Mawson TL, Folco EJ. et al. Roles of PAD4 and NETosis in experimental atherosclerosis and arterial injury: implications for superficial erosion. Circ Res 2018; 123 (01) 33-42
  • 38 Molinaro R, Yu M, Sausen G. et al. Targeted delivery of protein arginine deiminase-4 inhibitors to limit arterial intimal NETosis and preserve endothelial integrity. Cardiovasc Res 2021; 117 (13) 2652-2663
  • 39 Busque L, Patel JP, Figueroa ME. et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet 2012; 44 (11) 1179-1181
  • 40 Ito S, Shen L, Dai Q. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011; 333 (6047) 1300-1303
  • 41 Ko M, Huang Y, Jankowska AM. et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 2010; 468 (7325) 839-843
  • 42 He YF, Li BZ, Li Z. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011; 333 (6047) 1303-1307
  • 43 Zhang Q, Zhao K, Shen Q. et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 2015; 525 (7569) 389-393
  • 44 Yalcinkaya M, Liu W, Thomas LA. et al. BRCC3-mediated NLRP3 deubiquitylation promotes inflammasome activation and atherosclerosis in Tet2 clonal hematopoiesis. Circulation 2023; 148 (22) 1764-1777
  • 45 Liu W, Yalcinkaya M, Maestre IF. et al. Blockade of IL-6 signaling alleviates atherosclerosis in Tet2-deficient clonal hematopoiesis. Nat Cardiovasc Res 2023; 2 (06) 572-586
  • 46 Fuster JJ, Zuriaga MA, Zorita V. et al. TET2-loss-of-function-driven clonal hematopoiesis exacerbates experimental insulin resistance in aging and obesity. Cell Rep 2020; 33 (04) 108326
  • 47 Sano S, Oshima K, Wang Y. et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J Am Coll Cardiol 2018; 71 (08) 875-886
  • 48 Baldrighi M, Mallat Z, Li X. NLRP3 inflammasome pathways in atherosclerosis. Atherosclerosis 2017; 267: 127-138
  • 49 Svensson EC, Madar A, Campbell CD. et al. TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial. JAMA Cardiol 2022; 7 (05) 521-528
  • 50 Ridker PM, Everett BM, Thuren T. et al; CANTOS Trial Group. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377 (12) 1119-1131
  • 51 Sehested TSG, Bjerre J, Ku S. et al. Cost-effectiveness of canakinumab for prevention of recurrent cardiovascular events. JAMA Cardiol 2019; 4 (02) 128-135
  • 52 Miller J. FDA snubs Novartis bid to repurpose inflammation drug for heart attacks. Reuters. Accessed December 13, 2023 at: https://www.reuters.com/article/us-novartis-heart-disease-idUSKCN1MS2QY
  • 53 European Medicines Agency. Canakinumab Novartis. https://www.ema.europa.eu/en/medicines/human/EPAR/canakinumab-novartis
  • 54 Ridker PM, Rane M. Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease. Circ Res 2021; 128 (11) 1728-1746
  • 55 Ridker PM. A test in context: high-sensitivity C-reactive protein. J Am Coll Cardiol 2016; 67 (06) 712-723
  • 56 Bick AG, Pirruccello JP, Griffin GK. et al. Genetic interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis. Circulation 2020; 141 (02) 124-131
  • 57 Busque L, Sun M, Buscarlet M. et al. High-sensitivity C-reactive protein is associated with clonal hematopoiesis of indeterminate potential. Blood Adv 2020; 4 (11) 2430-2438
  • 58 Wu KK, Thiagarajan P. Role of endothelium in thrombosis and hemostasis. Annu Rev Med 1996; 47: 315-331
  • 59 Moliterno AR, Ginzburg YZ, Hoffman R. Clinical insights into the origins of thrombosis in myeloproliferative neoplasms. Blood 2021; 137 (09) 1145-1153
  • 60 Cordua S, Kjaer L, Skov V, Pallisgaard N, Hasselbalch HC, Ellervik C. Prevalence and phenotypes of JAK2 V617F and calreticulin mutations in a Danish general population. Blood 2019; 134 (05) 469-479
  • 61 Lamrani L, Lacout C, Ollivier V. et al. Hemostatic disorders in a JAK2V617F-driven mouse model of myeloproliferative neoplasm. Blood 2014; 124 (07) 1136-1145
  • 62 Edelmann B, Gupta N, Schnoeder TM. et al. JAK2-V617F promotes venous thrombosis through β1/β2 integrin activation. J Clin Invest 2018; 128 (10) 4359-4371
  • 63 Abplanalp WT, Mas-Peiro S, Cremer S, John D, Dimmeler S, Zeiher AM. Association of clonal hematopoiesis of indeterminate potential with inflammatory gene expression in patients with severe degenerative aortic valve stenosis or chronic postischemic heart failure. JAMA Cardiol 2020; 5 (10) 1170-1175
  • 64 Izzi B, Bonaccio M, de Gaetano G, Cerletti C. Learning by counting blood platelets in population studies: survey and perspective a long way after Bizzozero. J Thromb Haemost 2018; 16 (09) 1711-1721
  • 65 Kamphuis P, van Bergen MGJM, van Zeventer IA. et al. Abnormal platelet counts and clonal hematopoiesis in the general population. HemaSphere 2023; 7 (01) e821
  • 66 Veninga A, De Simone I, Heemskerk JWM, Cate HT, van der Meijden PEJ. Clonal hematopoietic mutations linked to platelet traits and the risk of thrombosis or bleeding. Haematologica 2020; 105 (08) 2020-2031
  • 67 Wong WJ, Emdin C, Bick AG. et al; NHLBI TOPMed Hematology Working Group. Clonal haematopoiesis and risk of chronic liver disease. Nature 2023; 616 (7958) 747-754
  • 68 Niroula A, Sekar A, Murakami MA. et al. Distinction of lymphoid and myeloid clonal hematopoiesis. Nat Med 2021; 27 (11) 1921-1927
  • 69 Brown DW, Cato LD, Zhao Y. et al. Shared and distinct genetic etiologies for different types of clonal hematopoiesis. Nat Commun 2023; 14 (01) 5536
  • 70 Izzi B, Gialluisi A, Gianfagna F. et al; On behalf of the Moli-Family Study Investigators. Platelet distribution width is associated with P-selectin dependent platelet function: results from the Moli-family cohort study. Cells 2021; 10 (10) 2737
  • 71 Izzi B, Costanzo S, Gialluisi A. et al; On behalf of the Moli-sani Study Investigators. Platelet distribution width is associated with cardiovascular mortality in an adult general population. Bleeding, Thromb Vasc Biol 2023; 2 (03) 83
  • 72 Beaulieu LM, Lin E, Mick E. et al. Interleukin 1 receptor 1 and interleukin 1β regulate megakaryocyte maturation, platelet activation, and transcript profile during inflammation in mice and humans. Arterioscler Thromb Vasc Biol 2014; 34 (03) 552-564