Horm Metab Res 2024; 56(02): 118-127
DOI: 10.1055/a-2209-0538
Review

Metabolic Syndrome Components in Patients with Pituitary Adenoma

Jorge A. Gonzalez-Almazan
1   Research Division, General Hospital of Mexico, Ciudad de Mexico, Mexico
2   Functional & Stereotactic Neurosurgery Unit, General Hospital of Mexico, Ciudad de Mexico, Mexico
3   Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
,
Ana Paula Cortes-Contreras
1   Research Division, General Hospital of Mexico, Ciudad de Mexico, Mexico
2   Functional & Stereotactic Neurosurgery Unit, General Hospital of Mexico, Ciudad de Mexico, Mexico
4   Faculty of Medicine, National Autonomous University of Mexico, Ciudad de Mexico, Mexico
,
Regina Flores-Rabasa
1   Research Division, General Hospital of Mexico, Ciudad de Mexico, Mexico
5   Faculty of Health Sciences, Anahuac University Mexico – Southern Campus, Ciudad de Mexico, Mexico
,
Lucia A. Mendez-Garcia
1   Research Division, General Hospital of Mexico, Ciudad de Mexico, Mexico
,
Galileo Escobedo
1   Research Division, General Hospital of Mexico, Ciudad de Mexico, Mexico
,
José L. Navarro Olvera
2   Functional & Stereotactic Neurosurgery Unit, General Hospital of Mexico, Ciudad de Mexico, Mexico
,
José D. Carrillo-Ruiz
1   Research Division, General Hospital of Mexico, Ciudad de Mexico, Mexico
2   Functional & Stereotactic Neurosurgery Unit, General Hospital of Mexico, Ciudad de Mexico, Mexico
6   Coordination of Neuroscience, Faculty of Psychology, University Anahuac Mexico, Huixquilucan, Mexico
› Author Affiliations

Abstract

Pituitary adenomas are benign tumors of the anterior portion of the pituitary gland (adenohypophysis), representing the 25% of all the tumor alterations. Pituitary adenomas are classified by the type of hormone secreted, cellularity, size, and structural alterations by the hormonal segregation. The diagnosis consists on the histopathological identification of cell types and the image-guided by magnetic resonance or tomography; the treatment can be both pharmacological and surgical. Metabolic Syndrome is the set of clinical conditions that increase the risk of cardiovascular diseases with an estimated prevalence of 25% worldwide. The alterations of metabolic syndrome are obesity, hypertension, dyslipidemia, insulin resistance, and diabetes mellitus type II. Pituitary adenomas and metabolic syndrome have an important relationship, hormone-secreting by pituitary adenomas affects a myriad of signaling pathways, which allows a favorable environment for the appearance of the metabolic syndrome. Moreover, patients with pituitary adenomas are shown to have an improvement in metabolic parameters after the medical/surgical treatment. The objective of this review is to explore the possible mechanisms through which PAs contributes to MetSx.



Publication History

Received: 28 April 2023

Accepted after revision: 27 October 2023

Article published online:
11 December 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Alexander JM, Biller BMK, Bikkal H. et al. Clinically nonfunctioning pituitary tumors are monoclonal in origin. J Clin Invest 1990; 86: 336-340
  • 2 Herman V, Fagin J, Gonsky R. et al. Clonal origin of pituitary adenomas. J Clin Endocrinol Metab 1990; 71: 1427-1433
  • 3 Lim CT, Korbonits M. Update on the clinicopathology of pituitary adenomas. Endocr Pract 2018; 24: 473-488
  • 4 Huang PL. A comprehensive definition for metabolic syndrome. DMM Dis Model Mech 2009; 2: 231-237
  • 5 Vargas-Ortega G, González-Virla B, Balcázar-Hernández L. et al. Cardiovascular risk and metabolic syndrome characteristics in patients with nonfunctional pituitary macroadenoma. Int J Endocrinol 2018; 2852710
  • 6 Zheng X, Li S, Zhang WH. et al. Metabolic abnormalities in pituitary adenoma patients: a novel therapeutic target and prognostic factor. Diabetes, Metab Syndr Obes Targets Ther 2015; 8: 357-361
  • 7 Daly AF, Beckers A. The epidemiology of pituitary adenomas. Endocrinol Metab Clin North Am 2020; 49: 347-355
  • 8 Wiedmann MKH, Brunborg C, Di Ieva A. et al. Overweight, obesity and height as risk factors for meningioma, glioma, pituitary adenoma and nerve sheath tumor: a large population-based prospective cohort study. Acta Oncol (Madr) 2017; 56: 1302-1309
  • 9 Asa SL, Mete O, Perry A. et al. Overview of the 2022 WHO classification of pituitary tumors. Endocr Pathol 2022; 33: 6-26
  • 10 Puglisi V, Morini E, Biasini F. et al. Neurological presentation of giant pituitary tumour apoplexy: case report and literature review of a rare but life-threatening condition. J Clin Med 2022; 11: 1581
  • 11 Casanueva FF, Molitch ME, Schlechte JA. et al. Guidelines of the Pituitary Society for the diagnosis and management of prolactinomas. Clin Endocrinol (Oxf) 2006; 65: 265-273
  • 12 Kreutzer J, Buslei R, Wallaschofski H. et al. Operative treatment of prolactinomas: Indications and results in a current consecutive series of 212 patients. Eur J Endocrinol 2008; 158: 11-18
  • 13 Babey M, Sahli R, Vajtai I. et al. Pituitary surgery for small prolactinomas as an alternative to treatment with dopamine agonists. Pituitary 2011; 14: 222-230
  • 14 Loeffler JS, Shih HA. Radiation therapy in the management of pituitary adenomas. J Clin Endocrinol Metab 2011; 96: 1992-2003
  • 15 Chen J, Liu H, Man S. et al. Endoscopic vs. microscopic transsphenoidal surgery for the treatment of pituitary adenoma: a meta-analysis. Front Surg 2022; 8: 746
  • 16 Störmann S, Schilbach K. Delving into acromegaly. J Clin Med 2023; 12: 1654
  • 17 Cozzi R, Montini M, Attanasio R. et al. Primary treatment of acromegaly with octreotide LAR: a long-term (up to nine years) prospective study of its efficacy in the control of disease activity and tumor shrinkage. J Clin Endocrinol Metab 2006; 91: 1397-1403
  • 18 Nieman LK, Biller BMK, Findling JW. et al. Treatment of cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2015; 100: 2807-2831
  • 19 Fleseriu M, Biller BMK, Findling JW. et al. Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing’s syndrome. J Clin Endocrinol Metab 2012; 97: 2039-2049
  • 20 Chow JT, Thompson GB, Grant CS. et al. Bilateral laparoscopic adrenalectomy for corticotrophin-dependent Cushing’s syndrome: a review of the Mayo Clinic experience. Clin Endocrinol (Oxf) 2008; 68: 513-519
  • 21 Beck-Peccoz P, Lania A, Beckers A. et al. 2013 European Thyroid Association guidelines for the diagnosis and treatment of thyrotropin-secreting pituitary tumors. Eur Thyroid J 2013; 2: 76-82
  • 22 Socin HV, Chanson P, Delemer B. et al. The changing spectrum of TSH-secreting pituitary adenomas: diagnosis and management in 43 patients. Eur J Endocrinol 2003; 148: 433-442
  • 23 Malchiodi E, Profka E, Ferrante E. et al. Thyrotropin-secreting pituitary adenomas: outcome of pituitary surgery and irradiation. J Clin Endocrinol Metab 2014; 99: 2069-2076
  • 24 Bartal A, Schiffer J, Miechowitz M. Surgical management of pituitary tumors. Harefuah 1971; 80: 237-240
  • 25 Brochier S, Galland F, Kujas M. et al. Factors predicting relapse of nonfunctioning pituitary macroadenomas after neurosurgery: a study of 142 patients. Eur J Endocrinol 2010; 163: 193-200
  • 26 Esposito K, Chiodini P, Colao A. et al. Metabolic syndrome and risk of cancer: a systematic review and meta-analysis. Diabetes Care 2012; 35: 2402-2411
  • 27 Rochlani Y, Pothineni NV, Kovelamudi S. et al. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis 2017; 11: 215-225
  • 28 Kassi E, Pervanidou P, Kaltsas G. et al. Metabolic syndrome: definitions and controversies. BMC Med 2011; 9: 1-13
  • 29 Fahed G, Aoun L, Bou Zerdan M. et al. Metabolic syndrome: updates on pathophysiology and management in 2021. Int J Mol Sci 2022; 23: 786
  • 30 Uzunlulu M, Telci Caklili O, Oguz A. Association between metabolic syndrome and cancer. Ann Nutr Metab 2016; 68: 173-179
  • 31 Włodarczyk M, Nowicka G. Obesity, DNA damage, and development of obesity-related diseases. Int J Mol Sci 2019; 20: 1146
  • 32 Donohoe CL, Lysaght J, O’Sullivan J. et al. Emerging concepts linking obesity with the hallmarks of cancer. Trends Endocrinol 2017; 28: 46-62
  • 33 Dos Santos Silva CM, Barbosa FRP, Lima GAB. et al. BMI and metabolic profile in patients with prolactinoma before and after treatment with dopamine agonists. Obesity 2011; 19: 800-805
  • 34 Shibli-Rahhal A, Schlechte J. The effects of hyperprolactinemia on bone and fat. Pituitary 2009; 12: 96-104
  • 35 Berg C, Petersenn S, Lahner H. et al. Cardiovascular risk factors in patients with uncontrolled and long-term acromegaly: comparison with matched data from the general population and the effect of disease control. J Clin Endocrinol Metab 2010; 95: 3648-3656
  • 36 Boero L, Manavela M, Gómez Rosso L. et al. Alterations in biomarkers of cardiovascular disease (CVD) in active acromegaly. Clin Endocrinol (Oxf) 2009; 70: 88-95
  • 37 Giordano C, Ciresi A, Amato MC. et al. Clinical and metabolic effects of first-line treatment with somatostatin analogues or surgery in acromegaly: a retrospective and comparative study. Pituitary 2012; 15: 539-551
  • 38 Doknic M, Pekic S, Zarkovic M. et al. Dopaminergic tone and obesity: an insight from prolactinomas treated with bromocriptine. Eur J Endocrinol 2002; 147: 77-84
  • 39 Greenman Y, Tordjman K, Stern N. Increased body weight associated with prolactin secreting pituitary adenomas: weight loss with normalization of prolactin levels. Clin Endocrinol (Oxf) 1998; 48: 547-553
  • 40 Yonenaga M, Fujio S, Habu M. et al. Postoperative changes in metabolic parameters of patients with surgically controlled acromegaly: assessment of new stringent cure criteria. Neurol Med Chir (Tokyo) 2018; 58: 147-155
  • 41 Briet C, Ilie MD, Kuhn E. et al. Changes in metabolic parameters and cardiovascular risk factors after therapeutic control of acromegaly vary with the treatment modality. Data from the Bicêtre cohort, and review of the literature. Endocrine 2019; 63: 348-360
  • 42 Altuntaś SÇ, Evran M, Sert M. et al. Markers of metabolic syndrome in patients with pituitary adenoma: a case series of 303 patients. Horm Metab Res 2019; 51: 709-713
  • 43 Macotela Y, Triebel J, Clapp C. Time for a new perspective on prolactin in metabolism. Trends Endocrinol 2020; 31: 276-286
  • 44 Sobrinho LG, Horseman ND. Prolactin and human weight disturbances: A puzzling and neglected association. Rev Endocr Metab Disord 2019; 20: 197-206
  • 45 Ali M, Mirza L. Morbid obesity due to prolactinoma and significant weight loss after dopamine agonist treatment. AACE Clin Case Rep 2021; 7: 204-206
  • 46 Auriemma RS, De Alcubierre D, Pirchio R. et al. The effects of hyperprolactinemia and its control on metabolic diseases. Expert Rev Endocrinol Metab 2018; 13: 99-106
  • 47 Pala NA, Laway BA, Misgar RA. et al. Metabolic abnormalities in patients with prolactinoma: response to treatment with cabergoline. Diabetol Metab Syndr 2015; 7: 99
  • 48 Atmaca A, Bilgici B, Ecemis GC. et al. Evaluation of body weight, insulin resistance, leptin and adiponectin levels in premenopausal women with hyperprolactinemia. Endocrine 2013; 44: 756-761
  • 49 Janssen JA. Mechanisms of putative IGF-I receptor resistance in active acromegaly. Growth Horm IGF Res 2020; 52: 101319
  • 50 Decock A, Verroken C, Van de Velde F. et al. In patients with controlled acromegaly, indices of glucose homeostasis correlate with IGF-1 levels rather than with type of treatment. Clin Endocrinol 2021; 95: 65-73
  • 51 Freda PU, Shen W, Heymsfield SB. et al. Lower visceral and subcutaneous but higher intermuscular adipose tissue depots in patients with growth hormone and insulin-like growth factor I excess due to acromegaly. J Clin Endocrinol Metab 2008; 93: 2334-2343
  • 52 Miller BS, Auchus RJ. Evaluation and treatment of patients with hypercortisolism: a review. JAMA Surg 2020; 155: 1152-1159
  • 53 Ferraù F, Korbonits M. Metabolic syndrome in cushing’s syndrome patients. Front Horm Res 2018; 49: 85-103
  • 54 Anagnostis P, Athyros VG, Tziomalos K. et al. The pathogenetic role of cortisol in the metabolic syndrome: A hypothesis. J Clin Endocrinol Metab 2009; 94: 2692-2701
  • 55 Luo P, Zhang L, Yang L. et al. Progress in the pathogenesis, diagnosis, and treatment of TSH-secreting pituitary neuroendocrine tumor. Front Endocrinol (Lausanne) 2020; 11: 580264
  • 56 Ríos-Prego M, Anibarro L, Sánchez-Sobrino P. Relationship between thyroid dysfunction and body weight: a not so evident paradigm. Int J Gen Med 2019; 12: 299-304
  • 57 Beck-Peccoz P, Giavoli C, Lania A. A 2019 update on TSH-secreting pituitary adenomas. J Endocrinol Invest 2019; 42: 1401-1406
  • 58 Kyriacou A, Kyriacou A, Makris KC. et al. Weight gain following treatment of hyperthyroidism – a forgotten tale. Clin Obes 2019; 9: 1-12
  • 59 Ntali G, Wass JA. Epidemiology, clinical presentation and diagnosis of non-functioning pituitary adenomas. Pituitary 2018; 21: 111-118
  • 60 Mercado M, Melgar V, Salame L. et al. Clinically non-functioning pituitary adenomas: pathogenic, diagnostic and therapeutic aspects. Endocrinol Diabetes Nutr 2017; 64: 384-395
  • 61 AlMalki MH, Ahmad MM, Brema I. et al. Contemporary management of clinically non-functioning pituitary adenomas: a clinical review. Clin Med Insights Endocrinol Diabetes 2020; 13: 1179551420932921
  • 62 Zhang L, Curhan GC, Forman JP. Plasma prolactin level and risk of incident hypertension in postmenopausal women. J Hypertens 2010; 28: 1400-1405
  • 63 Gulleroglu K, Olgac A, Bayrakci U. et al. Hyperprolactinemia as a rare cause of hypertension in chronic renal failure. Ren Fail 2012; 34: 792-794
  • 64 Dourado M, Cavalcanti F, Vilar L. et al. Relationship between prolactin, chronic kidney disease, and cardiovascular risk. Int J Endocrinol 2020; 9524839 DOI: 10.1155/2020/9524839.
  • 65 Sharma MD, Nguyen AV, Brown S. et al. Cardiovascular disease in acromegaly. Methodist Debakey Cardiovasc J 2017; 13: 64-67
  • 66 Pivonello R, Auriemma RS, Grasso LFS. et al. Complications of acromegaly: cardiovascular, respiratory and metabolic comorbidities. Pituitary 2017; 20: 46-62
  • 67 Puglisi S, Terzolo M. Hypertension and acromegaly. Endocrinol Metab Clin Nam 2021; 48: 779-793
  • 68 Isidori AM, Graziadio C, Paragliola RM. et al. The hypertension of Cushing’s syndrome: controversies in the pathophysiology and focus on cardiovascular complications. J Hypertens 2015; 33: 44-60
  • 69 Pivonello R, Isidori AM, De Martino MC. et al. Complications of Cushing’s syndrome: state of the art. Lancet Diabetes Endocrinol 2016; 4: 611-629
  • 70 Barbot M, Ceccato F, Scaroni C. The pathophysiology and treatment of hypertension in patients with Cushing’s syndrome. Front Endocrinol (Lausanne) 2019; 10: 321
  • 71 Nieman LK. Hypertension and cardiovascular mortality in patients with Cushing syndrome. Endocrinol Metab Clin North Am 2019; 48: 717-725
  • 72 Berta E, Lengyel I, Halmi S. et al. Hypertension in thyroid disorders. Front Endocrinol (Lausanne) 2019; 10: 482
  • 73 Jiskra J. Hyperthyroidism and the heart. Kardiol Rev 2018; 20: 167-172
  • 74 Khan R, Sikanderkhel S, Gui J. et al. Thyroid and cardiovascular disease: a focused review on the impact of hyperthyroidism in heart failure. Cardiol Res 2020; 11: 68-75
  • 75 Rivas AM, Pena C, Kopel J. et al. Hypertension and hyperthyroidism: association and pathogenesis. Am J Med Sci 2021; 361: 3-7
  • 76 Balbach L, Wallaschofski H, Völzke H. et al. Serum prolactin concentrations as risk factor of metabolic syndrome or type 2 diabetes?. BMC Endocr Disord 2013; 13: 12 DOI: 10.1186/1472-6823-13-12.
  • 77 Auriemma RS, De Alcubierre D, Pirchio R. et al. Glucose abnormalities associated to prolactin secreting pituitary adenomas. Front Endocrinol (Lausanne) 2019; 10: 327
  • 78 Sydney GI, Michalakis K, Nikas IP. et al. The effect of pituitary gland disorders on glucose metabolism: from pathophysiology to management. Horm Metab Res 2021; 53: 16-23
  • 79 Daimon M, Kamba A, Murakami H. et al. Association between serum prolactin levels and insulin resistance in non-diabetic men. PLoS One 2017; 12: e0175204
  • 80 Frara S, Maffezzoni F, Mazziotti G. et al. Current and emerging aspects of diabetes mellitus in acromegaly. Trends Endocrinol Metab 2016; 27: 470-483
  • 81 Hannon AM, Thompson CJ, Sherlock M. Diabetes in patients with acromegaly. Curr Diab Rep 2017; 17: 8
  • 82 Ferraù F, Albani A, Ciresi A. et al. Diabetes secondary to acromegaly: Physiopathology, clinical features and effects of treatment. Front Endocrinol (Lausanne) 2018; 9: 358
  • 83 Ani Sharma AV. Glucose metabolism in Cushing syndrome. Physiol Behav 2017; 176: 139-148
  • 84 Mazziotti G, Formenti AM, Frara S. Diabetes in Cushing disease. Curr Diab Rep 2017; 17: 32
  • 85 Pivonello R, Isidori AM, De Martino MC. et al. Complications of Cushing’s syndrome: state of the art. Lancet Diabetes Endocrinol 2016; 4: 611-629
  • 86 Barbot M, Ceccato F, Scaroni C. Diabetes mellitus secondary to Cushing’s disease. Front Endocrinol (Lausanne) 2018; 9: 284
  • 87 Scaroni C, Zilio M, Foti M. et al. Glucose metabolism abnormalities in cushing syndrome: from molecular basis to clinical management. Endocr Rev 2017; 38: 189-219
  • 88 Venditti P, Reed TT, Victor VM. et al. Insulin resistance and diabetes in hyperthyroidism: a possible role for oxygen and nitrogen reactive species. Free Radic Res 2019; 53: 248-268
  • 89 Kalra S, Aggarwal S, Khandelwal D. Thyroid dysfunction and type 2 diabetes mellitus: screening strategies and implications for management. Diabetes Ther 2019; 10: 2035-2044
  • 90 Schwetz V, Librizzi R, Trummer C. et al. Treatment of hyperprolactinaemia reduces total cholesterol and LDL in patients with prolactinomas. Metab Brain Dis 2017; 155-161
  • 91 Pirchio R, Auriemma RS, Solari D. et al. Effects of pituitary surgery and high-dose cabergoline therapy on metabolic profile in patients with prolactinoma resistant to conventional cabergoline treatment. Front Endocrinol 2021; 12: 769744
  • 92 Cintia M, Silva S, Barbosa FRP. et al. BMI and metabolic profile in patients with prolactinoma before and after treatment with dopamine agonists. Obesity 2011; 19: 800-805
  • 93 Kasuki L, Rocha P, da S, Lamback EB. et al. Determinants of morbidities and mortality in acromegaly. Arch Endocrinol Metab 2019; 63: 630-637
  • 94 Wolters TLC, Netea MG, Riksen NP. et al. Acromegaly, inflammation and cardiovascular disease: a review. Rev Endocr Metab Disord 2020; 21: 547-568
  • 95 Barbot M, Zilio M, Scaroni C. Cushing’s syndrome: overview of clinical presentation, diagnostic tools and complications. Best Pract Res Clin Endocrinol Metab 2020; 34: 101380
  • 96 Ferraù F, Korbonits M. Metabolic comorbidities in Cushing’s syndrome. Eur J Endocrinol 2015; 173: M133-M157
  • 97 Kumar DV, Mathur DSL, Tuteja DRK. Effects of thyroid dysfunction on lipid profile. Int J Med Biomed Stud 2019; 3: 76-84
  • 98 Teixeira PDFDS, Dos Santos PB, Pazos-Moura CC. The role of thyroid hormone in metabolism and metabolic syndrome. Ther Adv Endocrinol Metab 2020; 11: 2042018820917869
  • 99 Jin T, Teng X. Update on lipid metabolism and thyroid disorders. J Endocrinol Diabetes. Obes Rev 2014; 2: 1043
  • 100 Duntas LH, Brenta G. The effect of thyroid disorders on lipid levels and metabolism. Med Clin North Am 2012; 96: 269-281