Rofo 2024; 196(08): 794-806
DOI: 10.1055/a-2203-2945
Review

Dual-energy CT revisited: a focused review of clinical use cases

Dual-energy CT revisited: fokussierte Übersicht zur klinischen Anwendung
Simon Lennartz
Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
,
David Zopfs
Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
,
Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
› Author Affiliations

Abstract

Background

Dual-energy CT (DECT) has been available for more than 15 years and has undergone continuous technical development and refinement. Recently, the first photon-counting CT scanner became clinically available and has the potential to further expand the possibilities of spectral imaging. Numerous studies on DECT have been published since its creation, highlighting the clinical applications of the various reconstructions enabled by DECT.

Methods

The aim of this focused review is to succinctly summarize basic principles and available technical concepts of DECT and to discuss established applications relevant to the daily clinical routine.

Results/Conclusion

DECT is instrumental for a broad variety of clinical use cases. While some DECT applications can enhance day-to-day clinical practice, others are still subject to broad-scale validation and should therefore be handled with restraint in the clinical routine.

Key Points

  1. Virtual monoenergetic images, virtual unenhanced images, and iodine maps are the most well-investigated and relevant dual-energy CT reconstructions for clinical application.

  2. Low-keV virtual monoenergetic images (VMIs) yield superior image and iodine contrast, which can be leveraged for improved vessel assessment and lesion conspicuity, or to reduce contrast media or radiation dose. VMIs at intermediate energies can serve as a replacement for conventional grey-scale images. VMIs at high keV enable efficient artifact reduction, which can be further optimized in combination with dedicated metal artifact reduction algorithms.

  3. Iodine maps and virtual unenhanced images can improve lesion detection in oncologic imaging and enable lesion assessment in monophasic CT examinations, which may allow a reduction of correlative and follow-up imaging.

Citation Format

  • Lennartz S, Zopfs D, Große Hokamp N. Dual-energy CT revisited: a focused review of clinical use cases. Fortschr Röntgenstr 2024; 196: 794 – 806

Zusammenfassung

Hintergrund

Die Dual-Energy-CT (DECT) ist seit mehr als 15 Jahren verfügbar und hat kontinuierliche technische Entwicklungen und Verbesserungen durchlaufen. Kürzlich ist die erste photonenzählende CT klinisch verfügbar gemacht worden, die das Potenzial bietet, die Möglichkeiten der spektralen Bildgebung zu erweitern. Seit ihrer Entstehung wurden zahlreiche Studien zur DECT veröffentlicht, die unterschiedlichste klinische Anwendungen der durch DECT verfügbaren Rekonstruktionen untersuchen.

Methoden

Das Ziel dieser fokussierten Übersichtsarbeit ist es, die Grundprinzipien und verfügbaren technischen Konzepte der DECT knapp zusammenzufassen und etablierte Anwendungen zu diskutieren, die für die tägliche klinische Routine relevant sind.

Ergebnisse/Schlussfolgerungen

DECT ist ein nützliches Instrument für eine Vielzahl klinischer Anwendungsfälle. Während einige DECT-Anwendungen die klinische Praxis im Alltag verbessern können, bedürfen andere noch der Validierung und sollten daher in der klinischen Routine zurückhaltend eingesetzt werden.

Kernaussagen

  1. Virtuell monoenergetische Bilder, virtuell native Bilder und Iodkarten sind die am besten untersuchten und relevantesten Dual-Energy-CT-Rekonstruktionen für klinische Anwendungen.

  2. Virtuell monoenergetische Bilder (VMI) niedriger Energien liefern einen verbesserten Bild- und Iodkontrast, was für eine verbesserte Gefäßbewertung und Läsionssichtbarkeit genutzt werden bzw. die Reduktion von Kontrastmittel- oder Strahlendosis ermöglichen kann. VMIs bei mittleren Energien können als Standardrekonstruktionen für die klinische Routine eingesetzt werden. Höherenergetische VMIs ermöglichen eine effiziente Reduktion von Artefakten, die in Kombination mit dedizierten Algorithmen zur Reduktion von Metallartefakten noch weiter optimiert werden kann.

  3. Iodkarten und virtuell native Bilder können die Detektion von Läsionen in der onkologischen Bildgebung verbessern und erlauben die Charakterisierung von Läsionen in monophasischen CT-Untersuchungen, was zur Reduktion von ergänzenden bzw. Folgeuntersuchungen genutzt werden kann.



Publication History

Received: 16 June 2023

Accepted: 15 October 2023

Article published online:
04 January 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Alvarez RE, Macovski A. Energy-selective reconstructions in X-ray computerised tomography. Phys Med Biol 1976; 21: 002
  • 2 Hounsfield GN. Computerized transverse axial scanning (tomography): I. Description of system. Br J Radiol 1973; 46: 1016-1022
  • 3 Flohr TG, McCollough CH, Bruder H. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 2006; 16: 256
  • 4 Petersilka M, Bruder H, Krauss B. et al. Technical principles of dual source CT. Eur J Radiol 2008; 68: 362
  • 5 Schlemmer H-P. The Eye of the CT Scanner: The story of learning to see the invisible or from the fluorescent screen to the photon-counting detector. Fortschr Röntgenstr 2021; 193: 1034-1049
  • 6 Siegel MJ, Kaza RK, Bolus DN. et al. White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 1. J Comput Assist Tomogr 2016; 40: 841-845
  • 7 Mccollough CH, Leng S, Yu L. et al. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications. Radiology 2015; 276: 637-653
  • 8 Willemink MJ, Persson M, Pourmorteza A. et al. Photon-counting CT: Technical principles and clinical prospects. Radiology 2018; 289: 293-312
  • 9 Parakh A, Lennartz S, An C. et al. Dual-Energy CT Images: Pearls and Pitfalls. RadioGraphics 2021; 41: 98-119
  • 10 Jacobsen MC, Cressman ENK, Tamm EP. et al. Dual-energy CT: Lower limits of iodine detection and quantification. Radiology 2019; 292: 414-419
  • 11 Toepker M, Moritz T, Krauss B. et al. Virtual non-contrast in second-generation, dual-energy computed tomography: reliability of attenuation values. Eur J Radiol 2012; 81: e398-e405
  • 12 Reimer RP, Große Hokamp N, Fehrmann Efferoth A. et al. Virtual monoenergetic images from spectral detector computed tomography facilitate washout assessment in arterially hyper-enhancing liver lesions. Eur Radiol 2021; 31: 3468-3477
  • 13 Matsumoto K, Jinzaki M, Tanami Y. et al. Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology 2011; 259: 257
  • 14 Pomerantz SR, Kamalian S, Zhang D. et al. Virtual Monochromatic Reconstruction of Dual-Energy Unenhanced Head CT at 65–75 keV Maximizes Image Quality Compared with Conventional Polychromatic CT. Radiology 2013; 266: 318-325
  • 15 Neuhaus V, Abdullayev N, Große Hokamp N. et al. Improvement of Image Quality in Unenhanced Dual-Layer CT of the Head Using Virtual Monoenergetic Images Compared With Polyenergetic Single-Energy CT. Invest Radiol 2017; 52: 470-476
  • 16 Reimer RP, Flatten D, Lichtenstein T. et al. Virtual Monoenergetic Images from Spectral Detector CT Enable Radiation Dose Reduction in Unenhanced Cranial CT. Am J Neuroradiol 2019;
  • 17 Lennartz S, Laukamp KR, Neuhaus V. et al. Dual-layer detector CT of the head: Initial experience in visualization of intracranial hemorrhage and hypodense brain lesions using virtual monoenergetic images. Eur J Radiol 2018; 108: 177-183
  • 18 Cho SB, Baek HJ, Ryu KH. et al. Initial clinical experience with dual-layer detector spectral CT in patients with acute intracerebral haemorrhage: A single-centre pilot study. PLoS One 2017; 12: e0186024
  • 19 van Ommen F, Dankbaar JW, Zhu G. et al. Virtual monochromatic dual-energy CT reconstructions improve detection of cerebral infarct in patients with suspicion of stroke. Neuroradiology 2021; 63: 41-49
  • 20 Tijssen MPM, Hofman PAM, Stadler AAR. et al. The role of dual energy CT in differentiating between brain haemorrhage and contrast medium after mechanical revascularisation in acute ischaemic stroke. Eur Radiol 2014; 24: 834-840
  • 21 Gupta R, Phan CM, Leidecker C. et al. Evaluation of Dual-Energy CT for Differentiating Intracerebral Hemorrhage from Iodinated Contrast Material Staining. Radiology 2010; 257: 205-211
  • 22 Choi Y, Shin N-Y, Jang J. et al. Dual-energy CT for differentiating acute intracranial hemorrhage from contrast staining or calcification: a meta-analysis. Neuroradiology 2020; 62: 1617-1626
  • 23 Nair JR, Burrows C, Jerome S. et al. Dual energy CT: a step ahead in brain and spine imaging. Br J Radiol 2020; 93: 20190872
  • 24 Winklhofer S, Hinzpeter R, Stocker D. et al. Combining monoenergetic extrapolations from dual-energy CT with iterative reconstructions: reduction of coil and clip artifacts from intracranial aneurysm therapy. Neuroradiology 2018; 60: 281-291
  • 25 Dunet V, Bernasconi M, Hajdu SD. et al. Impact of metal artifact reduction software on image quality of gemstone spectral imaging dual-energy cerebral CT angiography after intracranial aneurysm clipping. Neuroradiology 2017; 59: 845-852
  • 26 Zopfs D, Lennartz S, Pennig L. et al. Virtual monoenergetic images and post-processing algorithms effectively reduce CT artifacts from intracranial aneurysm treatment. Sci Rep 2020; 10: 6629
  • 27 Mallinson PI, Coupal TM, McLaughlin PD. et al. Dual-Energy CT for the Musculoskeletal System. Radiology 2016; 281: 690-707
  • 28 Albrecht MH, Vogl TJ, Martin SS. et al. Review of Clinical Applications for Virtual Monoenergetic Dual-Energy CT. Radiology 2019; 293: 260-271
  • 29 Große Hokamp N, Hellerbach A, Gierich A. et al. Reduction of Artifacts Caused by Deep Brain Stimulating Electrodes in Cranial Computed Tomography Imaging by Means of Virtual Monoenergetic Images, Metal Artifact Reduction Algorithms, and Their Combination. Invest Radiol 2018; 53: 424-431
  • 30 Chou H, Chin TY, Peh WCG. Dual-energy CT in gout – A review of current concepts and applications. J Med Radiat Sci 2017; 64: 41-51
  • 31 Bongartz T, Glazebrook KN, Kavros SJ. et al. Dual-energy CT for the diagnosis of gout: an accuracy and diagnostic yield study. Ann Rheum Dis 2015; 74: 1072-1077
  • 32 Desai MA, Peterson JJ, Garner HW. et al. Clinical Utility of Dual-Energy CT for Evaluation of Tophaceous Gout. RadioGraphics 2011; 31: 1365-1375
  • 33 Booz C, Nöske J, Martin SS. et al. Virtual Noncalcium Dual-Energy CT: Detection of Lumbar Disk Herniation in Comparison with Standard Gray-scale CT. Radiology 2019; 290: 446-455
  • 34 Gosangi B, Mandell JC, Weaver MJ. et al. Bone Marrow Edema at Dual-Energy CT: A Game Changer in the Emergency Department. RadioGraphics 2020; 40: 859-874
  • 35 Diekhoff T, Hermann KG, Pumberger M. et al. Dual-energy CT virtual non-calcium technique for detection of bone marrow edema in patients with vertebral fractures: A prospective feasibility study on a single- source volume CT scanner. Eur J Radiol 2017; 87: 59-65
  • 36 Ai S, Qu M, Glazebrook KN. et al. Use of dual-energy CT and virtual non-calcium techniques to evaluate post-traumatic bone bruises in knees in the subacute setting. Skeletal Radiol 2014; 43: 1289-1295
  • 37 Abdellatif W, Ebada MA, Alkanj S. et al. Diagnostic Accuracy of Dual-Energy CT in Detection of Acute Pulmonary Embolism: A Systematic Review and Meta-Analysis. Can Assoc Radiol J 2021; 72: 285-292
  • 38 Kröger JR, Hickethier T, Pahn G. et al. Influence of spectral detector CT based monoenergetic images on the computer-aided detection of pulmonary artery embolism. Eur J Radiol 2017; 95: 242-248
  • 39 Dane B, Patel H, O’Donnell T. et al. Image Quality on Dual-energy CTPA Virtual Monoenergetic Images. Acad Radiol 2018; 25: 1075-1086
  • 40 Leithner D, Wichmann JL, Vogl TJ. et al. Virtual Monoenergetic Imaging and Iodine Perfusion Maps Improve Diagnostic Accuracy of Dual-Energy Computed Tomography Pulmonary Angiography With Suboptimal Contrast Attenuation. Invest Radiol 2017; 52: 659-665
  • 41 Kroeger JR, Zöllner J, Gerhardt F. et al. Detection of patients with chronic thromboembolic pulmonary hypertension by volumetric iodine quantification in the lung-a case control study. Quant Imaging Med Surg 2022; 12: 1121-1129
  • 42 Hoey ETD, Mirsadraee S, Pepke-Zaba J. et al. Dual-Energy CT Angiography for Assessment of Regional Pulmonary Perfusion in Patients With Chronic Thromboembolic Pulmonary Hypertension: Initial Experience. Am J Roentgenol 2011; 196: 524-532
  • 43 Ascenti G, Mazziotti S, Lamberto S. et al. Dual-energy CT for detection of endoleaks after endovascular abdominal aneurysm repair: Usefulness of colored iodine overlay. Am J Roentgenol 2011; 196: 1408-1414
  • 44 Javor D, Wressnegger A, Unterhumer S. et al. Endoleak detection using single-acquisition split-bolus dual-energy computer tomography (DECT). Eur Radiol 2017; 27: 1622-1630
  • 45 Chandarana H, Godoy MC, Vlahos I. Abdominal aorta: evaluation with dual-source dual-energy multidetector CT after endovascular repair of aneurysms—initial observations. Radiology 2008; 249: 692
  • 46 Si-Mohamed S, Dupuis N, Tatard-Leitman V. et al. Virtual versus true non-contrast dual-energy CT imaging for the diagnosis of aortic intramural hematoma. Eur Radiol 2019; 29: 6762-6771
  • 47 Lennartz S, Laukamp KR, Tandon Y. et al. Abdominal vessel depiction on virtual triphasic spectral detector CT: initial clinical experience. Abdom Radiol 2021; 46: 3501-3511
  • 48 Lee HA, Lee YH, Yoon KH. et al. Comparison of virtual unenhanced images derived from dual-energy CT with true unenhanced images in evaluation of gallstone disease. Am J Roentgenol 2016; 206: 74-80
  • 49 Song I, Yi JG, Park JH. et al. Virtual Non-Contrast CT Using Dual-Energy Spectral CT: Feasibility of Coronary Artery Calcium Scoring. Korean J Radiol 2016; 17: 321
  • 50 Gassert FG, Schacky CE, Müller-Leisse C. et al. Calcium scoring using virtual non-contrast images from a dual-layer spectral detector CT: comparison to true non-contrast data and evaluation of proportionality factor in a large patient collective. Eur Radiol 2021; 31: 6193-6199
  • 51 Yamada Y, Jinzaki M, Okamura T. et al. Feasibility of coronary artery calcium scoring on virtual unenhanced images derived from single-source fast kVp-switching dual-energy coronary CT angiography. J Cardiovasc Comput Tomogr 2014; 8: 391-400
  • 52 Große Hokamp N, Höink AJ, Doerner J. et al. Assessment of arterially hyper-enhancing liver lesions using virtual monoenergetic images from spectral detector CT: phantom and patient experience. Abdom Radiol 2018; 43: 2066-2074
  • 53 Mileto A, Nelson RC, Samei E. et al. Dual-energy MDCT in hypervascular liver tumors: effect of body size on selection of the optimal monochromatic energy level. Am J Roentgenol 2014; 203: 1257-1264
  • 54 Shuman WP, Green DE, Busey JM. et al. Dual-energy liver CT: Effect of monochromatic imaging on lesion detection, conspicuity, and contrast-to-noise ratio of hypervascular lesions on late arterial phase. Am J Roentgenol 2014; 203: 601-606
  • 55 Altenbernd J, Heusner TA, Ringelstein A. et al. Dual-energy-CT of hypervascular liver lesions in patients with HCC: Investigation of image quality and sensitivity. Eur Radiol 2011; 21: 738-743
  • 56 Husarik DB, Gordic S, Desbiolles L. et al. Advanced Virtual Monoenergetic Computed Tomography of Hyperattenuating and Hypoattenuating Liver Lesions: Ex-Vivo and Patient Experience in Various Body Sizes. Invest Radiol 2015; 50: 695-702
  • 57 Husarik DB, Gordic S, Desbiolles L. et al. Advanced Virtual Monoenergetic Computed Tomography of Hyperattenuating and Hypoattenuating Liver Lesions. Invest Radiol 2015; 50: 695-702
  • 58 Patel BN, Rosenberg M, Vernuccio F. et al. Characterization of Small Incidental Indeterminate Hypoattenuating Hepatic Lesions: Added Value of Single-Phase Contrast-Enhanced Dual-Energy CT Material Attenuation Analysis. Am J Roentgenol 2018; 211: 571-579
  • 59 Kaltenbach B, Wichmann JL, Pfeifer S. et al. Iodine quantification to distinguish hepatic neuroendocrine tumor metastasis from hepatocellular carcinoma at dual-source dual-energy liver CT. Eur J Radiol 2018; 105: 20-24
  • 60 Laroia ST, Yadav K, Kumar S. et al. Material decomposition using iodine quantification on spectral CT for characterising nodules in the cirrhotic liver: a retrospective study. Eur Radiol Exp 2021; 5: 22
  • 61 Berland LL, Silverman SG, Gore RM. Managing incidental findings on abdominal CT: white paper of the ACR incidental findings committee. J Am Coll Radiol 2010; 7: 754
  • 62 Silverman SG, Israel GM, Herts BR. et al. Management of the incidental renal mass. Radiology 2008; 249: 16
  • 63 Salameh J, Mcinnes MDF, Mcgrath TA. et al. Diagnostic Accuracy of Dual- Masses: Systematic Review and Meta-Analysis. AJR Am J Roentgenol 2019; 212: W100-W105
  • 64 Meyer M, Nelson RC, Vernuccio F. et al. Virtual Unenhanced Images at Dual-Energy CT: Influence on Renal Lesion Characterization. Radiology 2019; 291: 381-390
  • 65 Cao J, Lennartz S, Pisuchpen N. et al. Renal Lesion Characterization by Dual-Layer Dual-Energy CT: Comparison of Virtual and True Unenhanced Images. Am J Roentgenol 2022; 219: 614-623
  • 66 Jacobsen MC, Cressman ENK, Tamm EP. et al. Dual-Energy CT: Lower Limits of Iodine Detection and Quantification. Radiology 2019; 292: 414-419
  • 67 Mileto A, Marin D, Alfaro-Cordoba M. et al. Iodine quantification to distinguish clear cell from papillary renal cell carcinoma at dual-energy multidetector CT: A multireader diagnostic performance study. Radiology 2014; 273: 813-820
  • 68 Graser A, Becker CR, Staehler M. et al. Single-phase dual-energy CT allows for characterization of renal masses as benign or malignant. Invest Radiol 2010; 45: 399-405
  • 69 Lennartz S, Abdullayev N, Zopfs D. et al. Intra-individual consistency of spectral detector CT-enabled iodine quantification of the vascular and renal blood pool. Eur Radiol 2019; 29
  • 70 Zopfs D, Reimer RP, Sonnabend K. et al. Intraindividual consistency of iodine concentration in dual-energy computed tomography of the chest and abdomen. Invest Radiol 2021; 56: 181-187
  • 71 Nestler T, Haneder S, Hokamp NG. Modern imaging techniques in urinary stone disease. Curr Opin Urol 2019; 29: 81-88
  • 72 Große Hokamp N, Lennartz S, Salem J. et al. Dose independent characterization of renal stones by means of dual energy computed tomography and machine learning: an ex-vivo study. Eur Radiol 2020; 30: 1397-1404
  • 73 Spek A, Strittmatter F, Graser A. et al. Dual energy can accurately differentiate uric acid-containing urinary calculi from calcium stones. World J Urol 2016; 34: 1297-1302
  • 74 Jendeberg J, Thunberg P, Popiolek M. et al. Single-energy CT predicts uric acid stones with accuracy comparable to dual-energy CT-prospective validation of a quantitative method. Eur Radiol 2021; 31: 5980-5989
  • 75 Hokamp NG, Salem J, Hesse A. et al. Low-Dose Characterization of Kidney Stones Using Spectral Detector Computed Tomography: An Ex Vivo Study. Invest Radiol 2018; 53: 457-462
  • 76 Hidas G, Eliahou R, Duvdevani M. et al. Determination of Renal Stone Composition with Dual-Energy CT: In Vivo Analysis and Comparison with X-ray Diffraction. Radiology 2010; 257: 394-401
  • 77 Bovio S, Cataldi A, Reimondo G. et al. Prevalence of adrenal incidentaloma in a contemporary computerized tomography series. J Endocrinol Investig 2006; 29: 298-302
  • 78 Boland GW, Lee MJ, Gazelle GS. et al. Characterization of adrenal masses using unenhanced CT: an analysis of the CT literature. Am J Roentgenol 1998; 171: 201
  • 79 Boland GW, Lee MJ, Gazelle GS. et al. Characterization of adrenal masses using unenhanced CT: an analysis of the CT literature. Am J Roentgenol 1998; 171: 201-204
  • 80 Mayo-Smith WW, Song JH, Boland GL. et al. Management of Incidental Adrenal Masses: A White Paper of the ACR Incidental Findings Committee. J Am Coll Radiol 2017; 14: 1038-1044
  • 81 Caoili EM, Korobkin M, Francis IR. Adrenal masses: characterization with combined unenhanced and delayed enhanced CT. Radiology 2002; 222: 629
  • 82 Schieda N, Siegelman ES. Update on CT and MRI of Adrenal Nodules. Am J Roentgenol 2017; 208: 1206-1217
  • 83 Kim YK, Park BK, Kim CK. et al. Adenoma characterization: Adrenal protocol with dual-energy CT. Radiology 2013; 267: 155-163
  • 84 Helck A, Hummel N, Meinel FG. et al. Can single-phase dual-energy CT reliably identify adrenal adenomas?. Eur Radiol 2014; 24: 1636-1642
  • 85 Mileto A, Nelson RC, Marin D. et al. Dual-energy multidetector CT for the characterization of incidental adrenal nodules: Diagnostic performance of contrastenhanced material density analysis. Radiology 2015; 274: 445-454
  • 86 Borhani AA, Kulzer M, Iranpour N. et al. Comparison of true unenhanced and virtual unenhanced (VUE) attenuation values in abdominopelvic single-source rapid kilovoltage-switching spectral CT. Abdom Radiol 2017; 42: 710-717
  • 87 Glazer DI, Maturen KE, Kaza RK. et al. Adrenal Incidentaloma Triage With Single-Source (Fast-Kilovoltage Switch) Dual-Energy CT. Am J Roentgenol 2014; 203: 329-335
  • 88 Winkelmann MT, Gassenmaier S, Walter SS. et al. Differentiation of adrenal adenomas from adrenal metastases in single-phased staging dual-energy CT and radiomics. Diagnostic Interv Radiol 2022; 28: 208-216
  • 89 Nagayama Y, Inoue T, Oda S. et al. Adrenal Adenomas versus Metastases: Diagnostic Performance of Dual-Energy Spectral CT Virtual Noncontrast Imaging and Iodine Maps. Radiology 2020; 296: 324-332
  • 90 Cao J, Lennartz S, Parakh A. et al. Dual-layer dual-energy CT for characterization of adrenal nodules: can virtual unenhanced images replace true unenhanced acquisitions?. Abdom Radiol 2021;
  • 91 Ho LM, Marin D, Neville AM. et al. Characterization of Adrenal Nodules With Dual-Energy CT: Can Virtual Unenhanced Attenuation Values Replace True Unenhanced Attenuation Values?. Am J Roentgenol 2012; 198: 840-845
  • 92 Shern Liang E, Wastney T, Dobeli K. et al. Virtual non-contrast detector-based spectral CT predictably overestimates tissue density for the characterisation of adrenal lesions compared to true non-contrast CT. Abdom Radiol 2022; 47: 2462-2467
  • 93 Lennartz S, Pisuchpen N, Parakh A. et al. Virtual Unenhanced Images: Qualitative and Quantitative Comparison Between Different Dual-Energy CT Scanners in a Patient and Phantom Study. Invest Radiol 2022; 57: 52-61
  • 94 Surov A, Hainz M, Holzhausen HJ. et al. Skeletal muscle metastases: Primary tumours, prevalence, and radiological features. Eur Radiol 2010; 20: 649-658
  • 95 Lennartz S, Große Hokamp N, Abdullayev N. et al. Diagnostic value of spectral reconstructions in detecting incidental skeletal muscle metastases in CT staging examinations. Cancer Imaging 2019; 19
  • 96 Uhrig M, Simons D, Bonekamp D. et al. Improved detection of melanoma metastases by iodine maps from dual energy CT. Eur J Radiol 2017; 90: 27-33
  • 97 Andersen MB, Ebbesen D, Thygesen J. et al. Impact of spectral body imaging in patients suspected for occult cancer: a prospective study of 503 patients. Eur Radiol 2020; 30: 5539-5550
  • 98 Nagayama Y, Nakaura T, Oda S. et al. Dual-layer DECT for multiphasic hepatic CT with 50 percent iodine load: a matched-pair comparison with a 120 kVp protocol. Eur Radiol 2018; 28: 1719-1730
  • 99 Lennartz S, Hokamp NG, Zäske C. et al. Virtual monoenergetic images preserve diagnostic assessability in contrast media reduced abdominal spectral detector CT. Br J Radiol 2020; 93
  • 100 Shuman WP, Chan KT, Busey JM. et al. Dual-energy CT Aortography with 50% Reduced Iodine Dose Versus Single-energy CT Aortography with Standard Iodine Dose. Acad Radiol 2016;
  • 101 Agrawal MD, Oliveira GR, Kalva SP. et al. Prospective comparison of reduced-iodine-dose virtual monochromatic imaging dataset from dual-energy CT angiography with standard-iodine-dose single-energy CT angiography for abdominal aortic aneurysm. Am J Roentgenol 2016; 207: W125-W132