Synlett, Inhaltsverzeichnis Synlett 2024; 35(12): 1429-1435DOI: 10.1055/a-2184-4836 letter A Study on the Diazo-Transfer Reaction Using o-Nitrobenzenesulfonyl Azide Sungduk Gwak‡ , Ji Hye Lee‡ , Hyeok-Jun Kwon ∗ , Hogyu Han∗ Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract 15N-Labeled azides have a great potential as practical and effective tags for vibrational probing and hyperpolarized magnetic resonance imaging of biomolecules. They can be synthesized by reaction of primary amines with a 15N-labeled diazo-transfer reagent. TfNN15N, a γ-15N-labeled diazo-transfer reagent, was developed to prepare β-15N-labeled azides; these are vibrational probes devoid of strong spectral interference by Fermi resonance. To overcome the stability and safety problems associated with TfNN15N, there is a strong demand for the development of a novel γ-15N-labeled diazo-transfer reagent. We present a study on the diazo-transfer reaction using o-nitrobenzenesulfonyl azide (o-NsN3). o-NsNN15N, a γ-15N-labeled diazo-transfer reagent, was newly developed and found to be better than TfNN15N with respect to its physicochemical properties and ease of synthesis. Unlike TfNN15N, however, o-NsNN15N was found to afford a mixture of β- and γ-15N-labeled azides rather than the β-15N-labeled azide alone. A mechanism for the diazo-transfer reaction of o-NsNN15N with primary amines is proposed to explain the formation of such isotopomeric mixtures. Key words Key wordsdiazo-transfer reagents - sulfonyl azides - nosyl azide - organic azides - 15N labeling - isotopomerism Volltext Referenzen References and Notes 1a Scriven EF. V, Turnbull K. Chem. Rev. 1988; 88: 297 1b Organic Azides: Syntheses and Applications . Bräse S, Banert K. Wiley; Chichester: 2010 1c Tanimoto H, Kakiuchi K. Nat. Prod. Commun. 2013; 8: 1021 1d Intrieri D, Zardi P, Caselli A, Gallo E. Chem. Commun. 2014; 50: 11440 1e Song X.-R, Qui Y.-F, Liu X.-Y, Liang Y.-M. Org. Biomol. Chem. 2016; 14: 11317 1f Huang D, Yan G. Adv. Synth. Catal. 2017; 359: 1600 1g Wu K, Liang Y, Jiao N. Molecules 2016; 21: 352 1h Sala R, Loro C, Foschi F, Broggini G. Catalysts 2020; 10: 1173 2 Köhn M, Breinbauer R. Angew. Chem. Int. Ed. 2004; 43: 3106 3a Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004 3b Gordon CG, Mackey JL, Jewett JC, Sletten EM, Houk KN, Bertozzi CR. J. Am. Chem. Soc. 2012; 134: 9199 ; and references cited therein 3c Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR. Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 16793 3d Meng G, Guo T, Ma T, Zhang J, Shen Y, Sharpless KB, Dong J. Nature 2019; 574: 86 4a Ma J, Pazos IM, Zhang W, Culik RM, Gai F. Annu. Rev. Phys. Chem. 2015; 66: 357 4b Adhikary R, Zimmermann J, Romesberg FE. Chem. Rev. 2017; 117: 1927 4c Baiz CR, Błasiak B, Bredenbeck J, Cho M, Choi J.-H, Corcelli SA, Dijkstra AG, Feng C.-J, Garrett-Roe S, Ge N.-H, Hanson-Heine MW. D, Hirst JD, Jansen TL. C, Kwac K, Kubarych KJ, Londergan CH, Maekawa H, Reppert M, Saito S, Roy S, Skinner JL, Stock G, Straub JE, Thielges MC, Tominaga K, Tokmakoff A, Torii H, Wang L, Webb LJ, Zanni MT. Chem. Rev. 2020; 120: 7152 5a Oh K.-I, Lee J.-H, Joo C, Han H, Cho M. J. Phys. Chem. B 2008; 112: 10352 5b Oh K.-I, Kim W, Joo C, Yoo D.-G, Han H, Hwang G.-S, Cho M. J. Phys. Chem. B 2010; 114: 13021 5c Lee K.-K, Park K.-H, Joo C, Kwon H.-J, Han H, Ha J.-H, Park S, Cho M. Chem. Phys. 2012; 396: 23 5d Lee K.-K, Park K.-H, Joo C, Kwon H.-J, Jeon J, Jung H.-I, Park S, Han H, Cho M. J. Phys. Chem. B 2012; 116: 5097 5e Park JY, Kwon H.-J, Mondal S, Han H, Kwak K, Cho M. Phys. Chem. Chem. Phys. 2020; 22: 19223 5f Park JY, Mondal S, Kwon H.-J, Sahu PK, Han H, Kwak K, Cho M. J. Chem. Phys. 2020; 153: 164309 6a Ye S, Zaitseva E, Caltabiano G, Schertler GF. X, Sakmar TP, Deupi X, Vogel R. Nature 2010; 464: 1386 6b Taskent-Sezgin H, Chung J, Banerjee PS, Nagarajan S, Dyer RB, Carrico I, Raleigh DP. Angew. Chem. Int. Ed. 2010; 49: 7473 6c Shi L, Liu X, Shi L, Stinson HT, Rowlette J, Kahl LJ, Evans CR, Zheng C, Dietrich LE. P, Min W. Nat. Methods 2020; 17: 844 7 Tipping WJ, Lee M, Serrels A, Brunton VG, Hulme AN. Chem. Soc. Rev. 2016; 45: 2075 8a Nydegger MW, Dutta S, Cheatum CM. J. Chem. Phys. 2010; 133: 134506 8b Okuda M, Ohta K, Tominaga K. J. Chem. Phys. 2015; 142: 212418 8c Zhang J, Wang L, Zhang J, Zhu J, Pan X, Cui Z, Wang J, Fang W, Li Y. J. Phys. Chem. B 2018; 122: 8122 9a Gai XS, Fenlon EE, Brewer SH. J. Phys. Chem. B 2010; 114: 7958 9b Lipkin JS, Song R, Fenlon EE, Brewer SH. J. Phys. Chem. Lett. 2011; 2: 1672 9c Chalyavi F, Schmitz AJ, Fetto NR, Tucker MJ, Brewer SH, Fenlon EE. Phys. Chem. Chem. Phys. 2020; 22: 18007 10a Park H, Wang Q. Chem. Sci. 2022; 13: 7378 10b Bae J, Zhang G, Park H, Warren WS, Wang Q. Chem. Sci. 2021; 12: 14309 10c Park H, Chen J, Dimitrov IE, Park JM, Wang Q. ACS Sens. 2022; 7: 2928 10d Shchepin RV, Chekmenev EY. J. Labelled Compd. Radiopharm. 2014; 57: 621 10e Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PE. Z, Harzstark AL, Ferrone M, van Criekinge M, Chang JW, Bok R, Park I, Reed G, Carvajal L, Small EJ, Munster P, Weinberg VK, Ardenkjaer-Larsen JH, Chen AP, Hurd RE, Odegardstuen L.-I, Robb FJ, Tropp J, Murray JA. Sci. Transl. Med. 2013; 5: 198ra108 11a Pandiakumar AK, Sarma SP, Samuelson AG. Tetrahedron Lett. 2014; 55: 2917 11b Stevens MY, Sawant RT, Odell LR. J. Org. Chem. 2014; 79: 4826 12a Alper PB, Hung S.-C, Wong C.-H. Tetrahedron Lett. 1996; 37: 6029 12b Nyffeler PT, Liang C.-H, Koeller KM, Wong C.-H. J. Am. Chem. Soc. 2002; 124: 10773 13 Kwon H.-J, Gwak S, Park JY, Cho M, Han H. ACS Omega 2022; 7: 293 14a Xie S, Yan Z, Li Y, Song Q, Ma M. J. Org. Chem. 2018; 83: 10916 14b Green SP, Payne AD, Wheelhouse KM, Hallett JP, Miller PW, Bull JA. J. Org. Chem. 2019; 84: 5893 14c Green SP, Wheelhouse KM, Payne AD, Hallett JP, Miller PW, Bull JA. Org. Process Res. Dev. 2020; 24: 67 15a Goddard-Borger ED, Stick RV. Org. Lett. 2007; 9: 3797 15b Fischer N, Goddard-Borger ED, Greiner R, Klapötke TM, Skelton BW, Stierstorfer J. J. Org. Chem. 2012; 77: 1760 15c Potter GT, Jayson GC, Miller GJ, Gardiner JM. J. Org. Chem. 2016; 81: 3443 16a Ye H, Liu R, Li D, Liu Y, Yuan H, Guo W, Zhou L, Cao X, Tian H, Shen J, Wang PG. Org. Lett. 2013; 15: 18 16b Beaudoin S, Kinsey KE, Burns JF. J. Org. Chem. 2003; 68: 115 17 Barrow AS, Moses JE. Synlett 2016; 27: 1840 18a Besenyei G, Párkányi L, Foch I, Simándi LI, Kálmán A. J. Chem. Soc., Perkin Trans. 2 2000; 1798 18b Vogt H, Baumann T, Nieger M, Bräse S. Eur. J. Org. Chem. 2006; 5315 18c McGorry RJ, Allen SK, Pitzen MD, Coombs TC. Tetrahedron Lett. 2017; 58: 4623 19a Candeias NR, Afonso CA. M. Curr. Org. Chem. 2009; 13: 763 19b Kim SH, Park SH, Choi JH, Chang S. Chem. Asian J. 2011; 6: 2618 19c Zhang Z, Wang S, Zhang Y, Zhang G. J. Org. Chem. 2019; 84: 3919 20 o-, m-, and p-Nitrobenzenesulfonyl Azides; General ProcedureA solution of NaN3 (1.48 g, 22.8 mmol) in H2O (2 mL) was slowly added to a cooled (0 °C) solution of the appropriate nitrobenzenesulfonyl (nosyl) chloride 2 (5.0 g, 22.6 mmol) in THF (50 mL), and the mixture was stirred at r.t. for 3 h. The mixture was then concentrated in vacuo. The residue was dissolved in Et2O (200 mL), washed with sat. aq NaHCO3 (200 mL) and brine (200 mL), dried (Na2SO4), and concentrated in vacuo. The residue was dissolved in 1:1:1 Et2O–CH2Cl2–EtOAc (30 mL) at –40 °C, and hexane (250 mL) was added. The precipitate was then collected by filtration. o-Nitrobenzenesulfonyl Azide (1a)Prepared from o-nitrobenzenesulfonyl chloride (2a; 5.0 g, 22.6 mmol) according to the general procedure as a white solid; yield: 4.92 g (96%); mp 73–74 °C; Rf = 0.25 (EtOAc–hexane, 1:5). 1H NMR (500 MHz, CDCl3): δ = 8.20 (dd, J = 7.8, 1.4 Hz, 1 H), 7.93 (dd, J = 7.9, 1.5 Hz, 1 H), 7.89 (td, J = 7.6, 1.5 Hz, 1 H), 7.84 (td, J = 7.6, 1.6 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 147.68, 135.76, 133.09, 132.50, 131.65, 125.35. HRMS (EI+): m/z [M+] calcd for C6H4N4O4S: 227.9953; found: 227.9956. 21 o-Nitrobenezenesulfonyl Hydrazide (2a′)An 80% solution of N2H4·H2O (4.2 mL, 68.5 mmol) was added to a cooled (0 °C) solution of o-nitrobenzenesulfonyl chloride (2a; 3.0 g, 13.5 mmol) in THF (20 mL), and the mixture was stirred at r.t. for 1 h. The mixture then was concentrated in vacuo. The residue was dissolved in EtOAc (100 mL), washed with sat. aq NaHCO3 (100 mL) and brine (100 mL), dried (Na2SO4), and concentrated in vacuo. The residue was dissolved in CH2Cl2 (5 mL) at –40 °C, and hexane (100 mL) was added. The precipitate was collected by filtration to give a white solid; yield: (2.37 g, 81%); mp 100–101 °C; Rf = 0.30 (MeOH–CH2Cl2, 1:15).1H NMR (500 MHz, CD3CN): δ = 8.07 (ddd, J = 7.2, 2.0, 1.2 Hz, 1 H), 7.87 (ddd, J = 7.5, 2.3, 1.2 Hz, 1 H), 7.85 (td, J = 7.6, 1.5 Hz, 1 H), 7.82 (td, J = 7.5, 1.8 Hz, 1 H), 6.92 (br s, 1 H), 4.00 (br s, 2 H). 13C NMR (125 MHz, CD3CN): δ = 149.43, 135.46, 133.41, 133.14, 130.86, 125.81. HRMS (FAB+): m/z [M + H]+ calcd for C6H8N3O4S: 218.0236; found: 218.0231. 22 γ-15N-Labeled o-Nitrobenezenesulfonyl Azide (γ-1a')1 N aq HCl (10 mL) was added to a solution of 2a′ (1.78 g, 8.22 mmol) in CH2Cl2 (40 mL), and the mixture was stirred at 0 °C for 5 min. A solution of Na15NO2 (0.50 g, 7.14 mmol) in H2O (10 mL) was then slowly added, and the resulting mixture was stirred at r.t. for a further 3 h. The mixture was then concentrated in vacuo. The residue was dissolved in Et2O (150 mL), washed with sat. aq NaHCO3 (150 mL) and brine (150 mL), dried (Na2SO4), and concentrated in vacuo. The residue was purified by flash chromatography [silica gel, EtOAc–hexane (1:10)] to give a white solid; yield: 1.52 g (81%); mp 73–74 °C; Rf = 0.25 (EtOAc–hexane, 1:5).1H NMR (500 MHz, CDCl3): δ = 8.20 (dd, J = 7.8, 1.4 Hz, 1 H), 7.92 (dd, J = 7.9, 1.8 Hz, 1 H), 7.90 (td, J = 7.5, 1.2 Hz, 1 H), 7.84 (ddd, J = 7.8, 7.0, 2.0 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 147.62, 135.79, 133.11, 132.41, 131.62, 125.34. 15N NMR (50 MHz, CDCl3): δ = 245.31. HRMS (EI+): m/z [M+] calcd for C6H4N3 15NO4S: 228.9924; found: 228.9921. 23 See the Supporting Information for more information. 24 Computational Details26,27 NBO analysis was performed on the structure optimized in the gas phase at the DFT level with the B3LYP functional and the 6–311++G(2d) basis set in Gaussian 16. 25a Kaljurand I, Kütt A, Sooväli L, Rodima T, Mäemets V, Leito I, Koppel IA. J. Org. Chem. 2005; 70: 1019 25b Tshepelevitsh S, Kütt A, Lõkov M, Kaljurand I, Saame J, Heering A, Plieger PG, Vianello R, Leito I. Eur. J. Org. Chem. 2019; 6735 25c Kütt A, Tshepelevitsh S, Saame J, Lõkov M, Kaljurand I, Selberg S, Leito I. Eur. J. Org. Chem. 2021; 1407 26a Lee C, Yang W, Parr RG. Phys. Rev. B 1988; 37: 785 26b Becke AD. J. Chem. Phys. 1993; 98: 5648 27 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision A.03 . Gaussian, Inc.; Wallingford, CT: 2016 Zusatzmaterial Zusatzmaterial Supporting Information