CC BY-NC-ND 4.0 · Horm Metab Res 2024; 56(01): 99-106
DOI: 10.1055/a-2172-7228
Review

Salt and Aldosterone – Reciprocal and Combined Effects in Preclinical Models and Humans

Li Chen
1   Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, München, Germany
,
Christian Adolf
1   Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, München, Germany
,
Martin Reincke
1   Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, München, Germany
,
Holger Schneider
1   Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, München, Germany
› Author Affiliations
Funding Information This work was supported by the Else Kröner-Fresenius Stiftung in support of the German Conn’s Registry-Else-Kröner Hyperaldosteronism Registry (2013_A182, 2015_A171 and 2019_A104 to MR), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 694913 to MR), by the Deutsche Forschungsgemeinschaft (DFG) within the CRC/Transregio 205/2, (project No. 314061271) “The Adrenal: Central Relay in Health and Disease” to CA, HS, and MR and within the Clinician Scientist Program In Vascular MEdicine (PRIME) MA 2186/14-1 to HS, by the Förderprogramm für Forschung und Lehre (FöFoLe) Reg.-Nr 1051 to CA and by grants from the China Scholarship Council(CSC) — 202106940008 to LC.

Abstract

Primary aldosteronism is an endocrine disorder caused by excessive production of aldosterone by the adrenal glands, and is recognized as the most important cause of endocrine hypertension. With specific therapy, this type of hypertension is potentially curable. In the general population, high salt intake increases the risk for cardiovascular diseases like stroke. In populations with aldosterone excess, observational and experimental data suggest that aldosterone-induced organ damage requires a combination of high dietary salt intake and high plasma aldosterone, i.e., plasma aldosterone levels inappropriately high for salt status. Therefore, understanding the relationship between plasma aldosterone levels and dietary salt intake and the nature of their combined effects is crucial for developing effective prevention and treatment strategies. In this review, we present an update on findings about primary aldosteronism and salt intake and the underlying mechanisms governing their interaction.



Publication History

Received: 29 June 2023

Accepted after revision: 03 September 2023

Accepted Manuscript online:
08 September 2023

Article published online:
27 October 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Rossier BC, Baker ME, Studer RA. Epithelial sodium transport and its control by aldosterone: The story of our internal environment revisited. Physiol Rev 2015; 95: 297-340
  • 2 Broeker KAE, Schrankl J, Fuchs MAA. et al. Flexible and multifaceted: the plasticity of renin-expressing cells. Pflugers Arch Eur J Physiol 2022; 474: 799-812
  • 3 Lorenz JN, Weihprecht H, Schnermann J. et al. Renin release from isolated juxtaglomerular apparatus depends on macula densa chloride transport. Am J Physiol Ren Fluid Electrolyte Physiol 1991; 260
  • 4 Reincke M, Bancos I, Mulatero P. et al. Diagnosis and treatment of primary aldosteronism. Lancet Diabetes Endocrinol 2021; 9: 876-892
  • 5 Takeda Y, Demura M, Wang F. et al. Epigenetic regulation of aldosterone synthase gene by sodium and angiotensin II. J Am Heart Assoc 2018; 7: 1-12
  • 6 Vohra T, Kemter E, Sun N. et al. Effect of dietary sodium modulation on pig adrenal steroidogenesis and transcriptome profiles. Hypertension 2020; 1769-1777
  • 7 Williams TA, Monticone S, Crudo V. et al. Visinin-like 1 is upregulated in aldosterone-producing adenomas with KCNJ5 mutations and protects from calcium-induced apoptosis. Hypertension 2012; 59: 833-839
  • 8 Te Riet L, Van Esch JHM, Roks AJM. et al. Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res 2015; 116: 960-975
  • 9 McGraw AP, Bagley J, Chen WS. et al. Aldosterone increases early atherosclerosis and promotes plaque inflammation through a placental growth factor-dependent mechanism. J Am Heart Assoc 2013; 2: 1-14
  • 10 Nakamura T, Kurihara I, Kobayashi S. et al. Intestinal mineralocorticoid receptor contributes to epithelial sodium channel–mediated intestinal sodium absorption and blood pressure regulation. J Am Heart Assoc 2018; 7: e008259
  • 11 Kurtz TW, Morris RC, Pravenec M. et al. Hypertension in primary aldosteronism is initiated by salt-induced increases in vascular resistance with reductions in cardiac output. Hypertension 2023; 80: 1077-1091
  • 12 Filippini T, Malavolti M, Whelton PK. et al. Blood pressure effects of sodium reduction. Circulation 2021; 143: 1542-1567
  • 13 Strazzullo P, D’Elia L, Kandala NB. et al. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ 2009; 339: 1296
  • 14 Mancia G, Kreutz R, Brunström M. et al. 2023; ESH guidelines for the management of arterial hypertension. J Hypertens 2023: 1-199
  • 15 Whelton PK, Carey RM, Aronow WS. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American college of cardiology/American heart association task force on clinical Pr. Hypertension 2018; 71: 13-115
  • 16 Amine EK, Baba NH, Belhadj M. et al Diet, nutrition and the prevention of chronic diseases. World Health Organ Tech Rep Ser 2003; 916 i–viii 1-149 backcover
  • 17 Ohno Y, Sone M, Inagaki N. et al. Prevalence of cardiovascular disease and its risk factors in primary aldosteronism: a multicenter study in Japan. Hypertension 2018; 71: 530-537
  • 18 Adolf C, Görge V, Heinrich DA. et al. Altered taste perception for sodium chloride in patients with primary aldosteronism: a prospective cohort study. Hypertension 2021; 1332-1340
  • 19 Adolf C, Schneider H, Heinrich DA. et al. Salt appetite and its effects on cardiovascular risk in primary aldosteronism. Horm Metab Res 2020; 52: 386-393
  • 20 Resch JM, Fenselau H, Madara JC. et al. Aldosterone-sensing neurons in the NTS exhibit state-dependent pacemaker activity and drive sodium appetite via synergy with angiotensin II signaling. Neuron 2017; 96: 190-206.e7
  • 21 Brilla CG, Weber KT. Mineralocorticoid excess, dietary sodium, and myocardial fibrosis. J Lab Clin Med 1992; 120: 893-901
  • 22 Oliver WJ, Cohen EI, Neel JV. Blood pressure, sodium intake, and sodium related hormones in the Yanomamo indians, a „no salt“ culture. Circulation 1975; 52: 146-151
  • 23 Basting T, Lazartigues E. DOCA-salt hypertension: an update. Curr Hypertens Rep 2017; 19: 1-8
  • 24 Brilla CG, Weber KT. Reactive and reparative myocardial fibrosis in arterial hypertension in the rat. Cardiovasc Res 1992; 26: 671-677
  • 25 Rocha R, Rudolph AE, Frierdich GE. et al. Aldosterone induces a vascular inflammatory phenotype in the rat heart. Am J Physiol Heart Circ Physiol 2002; 283: 1802-1810
  • 26 Schewe J, Seidel E, Forslund S. et al. Elevated aldosterone and blood pressure in a mouse model of familial hyperaldosteronism with ClC-2 mutation. Nat Commun 2019; 10: 5155
  • 27 Göppner C, Orozco IJ, Hoegg-Beiler MB. et al. Pathogenesis of hypertension in a mouse model for human CLCN2 related hyperaldosteronism. Nat Commun 2019; 10: 1-13
  • 28 Makhanova N, Hagaman J, Kim HS. et al. Salt-sensitive blood pressure in mice with increased expression of aldosterone synthase. Hypertension 2008; 51: 134-140
  • 29 Taylor MJ, Ullenbruch MR, Frucci EC. et al. Chemogenetic activation of adrenocortical Gq signaling causes hyperaldosteronism and disrupts functional zonation. J Clin Invest 2019; 130: 83-93
  • 30 Uzu T, Nishimura M, Fujii T. et al. Changes in the circadian rhythm of blood pressure in primary aldosteronism in response to dietary sodium restriction and adrenalectomy. J Hypertens 1998; 16: 1745-1748
  • 31 Schneider H, Sarkis A, Sturm L. et al. Moderate dietary salt restriction improves blood pressure and mental well‐being in patients with primary aldosteronism: The salt CONNtrol trial. J Intern Med 2023; 294: 47-57
  • 32 Stowasser M, Sharman J, Leano R. et al. Evidence for abnormal left ventricular structure and function in normotensive individuals with familial hyperaldosteronism type I. J Clin Endocrinol Metab 2005; 90: 5070-5076
  • 33 Young M, Head G, Funder J. Determinants of cardiac fibrosis in experimental hypermineralocorticoid states. Am J Physiol Endocrinol Metab 1995; 269: 657-662
  • 34 Martinez DV., Rocha R, Matsumura M. et al. Cardiac damage prevention by eplerenone: comparison with low sodium diet or potassium loading. Hypertension 2002; 39: 614-618
  • 35 Young M, Funder J. Mineralocorticoid action and sodium-hydrogen exchange: Studies in experimental cardiac fibrosis. Endocrinology 2003; 144: 3848-3851
  • 36 Fujisawa G, Okada K, Muto S. et al. Na/H exchange isoform 1 is involved in mineralocorticoid/salt-induced cardiac injury. Hypertension 2003; 41: 493-498
  • 37 Lacolley P, Labat C, Pujol A. et al. Increased carotid wall elastic modulus and fibronectin in aldosterone-salt-treated rats: Effects of eplerenone. Circulation 2002; 106: 2848-2853
  • 38 Hung C-S, Sung S-H, Liao C-W. et al. Aldosterone induces vascular damage – a wave reflection analysis study. Hypertension 2019; 74: 623-629
  • 39 Chan C-K, Yang W-S, Lin Y-H. et al. Arterial stiffness is associated with clinical outcome and cardiorenal injury in lateralized primary aldosteronism. J Clin Endocrinol Metab 2020; 105: e3950-e3960
  • 40 Rocha R, Martin-Berger CL, Yang P. et al. Selective aldosterone blockade prevents angiotensin II/salt-induced vascular inflammation in the rat heart. Endocrinology 2002; 143: 4828-4836
  • 41 Pu Q, Neves MF, Virdis A. et al. Endothelin antagonism on aldosterone-induced oxidative stress and vascular remodeling. Hypertension 2003; 42: 49-55
  • 42 Leopold JA, Dam A, Maron BA. et al. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nat Med 2007; 13: 189-197
  • 43 Oberleithner H, Riethmüller C, Schillers H. et al. Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc Natl Acad Sci U S A 2007; 104: 16281-16286
  • 44 Nishizaka MK, Zaman MA, Green SA. et al. Impaired endothelium-dependent flow-mediated vasodilation in hypertensive subjects with hyperaldosteronism. Circulation 2004; 109: 2857-2861
  • 45 Kishimoto S, Oki K, Maruhashi T. et al. Eplerenone improves endothelial function and arterial stiffness and inhibits Rho-associated kinase activity in patients with idiopathic hyperaldosteronism. J Hypertens 2019; 37: 1083-1095
  • 46 Kishimoto S, Oki K, Maruhashi T. et al. A comparison of adrenalectomy and eplerenone on vascular function in patients with aldosterone-producing adenoma. J Clin Endocrinol Metab 2020; 105: 2341-2386
  • 47 Matsumoto T, Oki K, Kajikawa M. et al. Effect of aldosterone-producing adenoma on endothelial function and rho-associated kinase activity in patients with primary aldosteronism. Hypertension 2015; 65: 841-848
  • 48 Tsuchiya K, Yoshimoto T, Hirata Y. Endothelial dysfunction is related to aldosterone excess and raised blood pressure. Endocr J 2009; 56: 553-559
  • 49 Marzolla V, Armani A, Mammi C. et al. Essential role of ICAM-1 in aldosterone-induced atherosclerosis. Int J Cardiol 2017; 232: 233-242
  • 50 Nishiyama A, Yao L, Nagai Y. et al. Possible contributions of reactive oxygen species and mitogen-activated protein kinase to renal injury in aldosterone/salt-induced hypertensive rats. Hypertension 2004; 43: 841-848
  • 51 Lam EYM, Funder JW, Nikolic-Paterson DJ. et al. Mineralocorticoid receptor blockade but not steroid withdrawal reverses renal fibrosis in deoxycorticosterone/salt rats. Endocrinology 2006; 147: 3623-3629
  • 52 Blasi ER, Rocha R, Rudolph AE. et al. Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int 2003; 63: 1791-1800
  • 53 Takeda Y, Yoneda T, Demura M. et al. Sodium-induced cardiac aldosterone synthesis causes cardiac hypertrophy. Endocrinology 2000; 141: 1901-1904
  • 54 Bayorh MA, Ganafa AA, Emmett N. et al. Alterations in aldosterone and angiotensin II levels in salt-induced hypertension. Clin Exp Hypertens 2005; 27: 355-367
  • 55 Takeda Y, Miyamori I, Yoneda T. et al. Regulation of aldosterone synthase in human vascular endothelial cells by angiotensin II and adrenocorticotropin. J Clin Endocrinol Metab 1996; 81: 2797-2800
  • 56 Takeda R, Hatakeyama H, Takeda Y. et al. Aldosterone biosynthesis and action in vascular cells. Steroids 1995; 60: 120-124
  • 57 Alesutan I, Voelkl J, Feger M. et al. Involvement of vascular aldosterone synthase in phosphate-induced osteogenic transformation of vascular smooth muscle cells. Sci Rep 2017; 7: 1-15
  • 58 Manunta P, Hamilton BP, Hamlyn JM. Salt intake and depletion increase circulating levels of endogenous ouabain in normal men. Am J Physiol Regul Integr Comp Physiol 2006; 290: 553-559
  • 59 Bagrov AY, Shapiro JI, Fedorova OV. Endogenous cardiotonic steroids: physiology, pharmacology, and novel therapeutic targets. Pharmacol Rev 2009; 61: 9-38
  • 60 Dmitrieva RI, Bagrov AY, Lalli E. et al. Mammalian bufadienolide is synthesized from cholesterol in the adrenal cortex by a pathway that is independent of cholesterol side-chain cleavage. Hypertension 2000; 36: 442-448
  • 61 Funder JW. Primary aldosteronism and salt. Pflugers Arch Eur J Physiol 2015; 467: 587-594
  • 62 Tentori S, Messaggio E, Brioni E. et al. Endogenous ouabain and aldosterone are coelevated in the circulation of patients with essential hypertension. J Hypertens 2016; 34: 2074-2080
  • 63 Tomaschitz A, Piecha G, Ritz E. et al. Marinobufagenin in essential hypertension and primary aldosteronism: A cardiotonic steroid with clinical and diagnostic implications. Clin Exp Hypertens 2015; 37: 108-115
  • 64 Bagrov AY, Roukoyatkina NI, Pinaev AG. et al. Effects of two endogenous Na+,K+-ATPase inhibitors, marinobufagenin and ouabain, on isolated rat aorta. Eur J Pharmacol 1995; 274: 151-158
  • 65 Schoner W, Scheiner-Bobis G. Endogenous and exogenous cardiac glycosides and their mechanisms of action. Am J Cardiovasc Drugs 2007; 7: 173-189
  • 66 Nagase M, Matsui H, Shibata S. et al. Salt-induced nephropathy in obese spontaneously hypertensive rats via paradoxical activation of the mineralocorticoid receptor: Role of oxidative stress. Hypertension 2007; 50: 877-883
  • 67 Nagase M, Ayuzawa N, Kawarazaki W. et al. Oxidative stress causes mineralocorticoid receptor activation in rat cardiomyocytes: role of small GTPase Rac1. Hypertension 2012; 59: 500-506
  • 68 Mihailidou AS, Le TYL, Mardini M. et al. Glucocorticoids activate cardiac mineralocorticoid receptors during experimental myocardial infarction. Hypertension 2009; 54: 1306-1312
  • 69 Fan CY, Kawai Y, Inaba S. et al. Synergy of aldosterone and high salt induces vascular smooth muscle hypertrophy through up-regulation of NOX1. J Steroid Biochem Mol Biol 2008; 111: 29-36
  • 70 Mell B, Jala VR, Mathew AV.. et al. Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol Genomics 2015; 47: 187-197
  • 71 Bier A, Braun T, Khasbab R. et al. A high salt diet modulates the gut microbiota and short chain fatty acids production in a salt-sensitive hypertension rat model. Nutrients 2018; 10: 1-10
  • 72 Yang T, Santisteban MM, Rodriguez V. et al. Gut dysbiosis is linked to hypertension. Hypertension 2015; 65: 1331-1340
  • 73 Liu Y, Jiang Q, Liu Z. et al. Alteration of gut microbiota relates to metabolic disorders in primary aldosteronism patients. Front Endocrinol (Lausanne) 2021; 12: 1-11
  • 74 Heijden Van Der CDCC, Smeets EMM, Aarntzen EHJG. et al. Arterial wall inflammation and increased hematopoietic activity in patients with primary aldosteronism. J Clin Endocrinol Metab 2020; 105: 1-14
  • 75 Wenzel UO, Bode M, Kurts C. et al. Salt, inflammation, IL-17 and hypertension. Br J Pharmacol 2019; 176: 1853-1863
  • 76 Wilck N, Matus MG, Kearney SM. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 2017; 551: 585-589
  • 77 Huang L, Trieu K, Yoshimura S. et al. Effect of dose and duration of reduction in dietary sodium on blood pressure levels: systematic review and meta-analysis of randomised trials. BMJ 2020; 368: 8-10
  • 78 He FJ, Ma Y, Campbell NRC. et al. Formulas to estimate dietary sodium intake from spot urine alter sodium-mortality relationship. Hypertension 2019; 74: 572-580
  • 79 NICE. Cardiovascular disease prevention. 2010 www.nice.org.uk/guidance/ph25
  • 80 Yoshida Y, Fujiki R, Kinoshita M. et al. Importance of dietary salt restriction for patients with primary aldosteronism during treatment with mineralocorticoid receptor antagonists: the potential importance of post-treatment plasma renin levels. Hypertens Res 2023; 46: 100-107
  • 81 Catena C, Colussi GL, Novello M. et al. Dietary salt intake is a determinant of cardiac changes after Ttreatment of primary aldosteronism: a prospective study. Hypertension 2016; 68: 204-212
  • 82 Neal B, Wu Y, Feng X. et al. Effect of salt substitution on cardiovascular events and death. N Engl J Med 2021; 385: 1067-1077