Klin Padiatr 2024; 236(04): 240-246
DOI: 10.1055/a-2135-2163
Original Article

The Derivation of Epigastric Motion to Assess Neonatal Breathing and Sleep: An Exploratory Study

Die Ableitung epigastrischer Bewegung zur Abschätzung neonataler Atmung und des neonatalen Schlafs: Eine explorative Untersuchung
Guido Stichtenoth
1   Department of Pediatrics, University of Lübeck, Lubeck, Germany
,
Niclas Knottnerus-Meyer
1   Department of Pediatrics, University of Lübeck, Lubeck, Germany
,
Jonas Helmstetter
2   New Buisness Development, Drägerwerk AG und Co KGaA, Lubeck, Germany
,
3   Institute for Signal Processing, University of Lübeck, Lubeck, Germany
,
Egbert Herting
1   Department of Pediatrics, University of Lübeck, Lubeck, Germany
› Institutsangaben
Funding Information Drägerwerk AG & Co. KGaA

Abstract

Introduction New non-medical monitors are offered for respiration monitoring of neonates. Epigastric motion during sleep was investigated by means of a wearable tracker in parallel to clinical monitoring. Cohort: 23 hospitalised neonates ready for discharge.

Methods A 3-axes-accelerometer and -gyroscope was placed in a standard epigastric position. Between two routine care rounds signals were recorded in parallel to monitoring of impedance pneumography (IP), ECG and pulse oximetry. Motion signals vs. time charts were evaluated using 10-min episodes and semiquantitatively assigned to breathing signal quality, regular breathing, periodic breathing and confounding artefacts. The results were compared with the impedance pneumographic data.

Results 26 recordings (mean duration: 210 min/infant) were conducted without bradycardia or apnea alarm. The gestational age at birth ranged 28.9 to 41.1 and at recording from 35.6 to 42.3 postmenstrual weeks. Motion patterns of quiet sleep with regular breathing, periodic breathing and active sleep with confounding body movements were found. The longitudinal and transversal gyroscope axes resulted in best signal quality. Periodic breathing was found in up to 80% of episodes and decreased inversely with gestational age showing significantly more periodic breathing in preterm infants. Respiration signals of the gyroscope vs. IP showed a low bias and highly variating frequencies.

Conclusions Standardized motion trackers may detect typical neonatal breathing and body-motion-patterns, that could help to classify neonatal sleep. Respiratory rates can only be determined during quiet sleep.

Zusammenfassung

Hintergrund Neue nichtmedizinische Überwachungsmonitore werden für Neugeborene angeboten. Epigastrische (Atem-) Bewegungen im Schlaf wurden mittels eines tragbaren Bewegungssensors parallel zum klinischen Monitoring untersucht. Kohorte: 23 Neugeborene vor Entlassung aus der Klinik.

Methoden Ein 3-Achsen-Accelerometer und -Gyroskop wurde in standardisierter Position über dem Epigastrium befestigt. Zwischen 2 Pflege-Versorgungsrunden wurden die Signale parallel zur Impedanzpneumographie (IP), EKG und Pulsoximetrie aufgezeichnet. Bewegungssignale vs. Zeit wurden in je 10min-Episoden evaluiert und semiquantitativ der Atembewegungs-Signalqualität, regelmäßiger Atmung, periodischer Atmung, Häufigkeit von Bewegungsartefakten und Apnoe zugeordnet. Die Ergebnisse wurden mit der IP verglichen.

Ergebnisse Es erfolgten 26 Messungen (Mittel: 210 min/Kind), ohne Bradykardie oder Apnoealarme. Das Gestationsalter bei Geburt war 28,9–41,1 und bei der Messung 35,6–42,3 Wochen. Die Atembewegungs-Bewegungsartefakt-Muster ließen sich in ruhigen Schlaf mit regelmäßiger Atmung, periodische Atmung oder aktiven Schlaf einteilen. Die longitudinale und transversale Gyroskopachse zeigten die besten Atembewegungs-Signale. Periodische Atmung zeigte sich in bis zu 80% der Episoden und nahm invers zum Gestationsalter ab mit signifikantem Unterschied zwischen Früh- und Reifgeborenen. Atemsignale von Gyroskop vs IP zeigen einen geringen Bias bei hoher Frequenzvarianz.

Schlussfolgerung Standardisiert platzierte Bewegungssensoren können typische Muster von neonatalen Atem- und Körperbewegung erfassen. Dies kann zur Analyse des Schlafs beitragen. Atemfrequenzen können nur im ruhigen Schlaf erfasst werden.



Publikationsverlauf

Artikel online veröffentlicht:
06. September 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 MacLean JE, Fitzgerald DA, Waters KA. Developmental changes in sleep and breathing across infancy and childhood. Paediatr Respir Rev 2015; 16: 276-284
  • 2 Kahn A, Dan B, Groswasser J. et al. Normal Sleep Architecture in Infants and Children. J Clin Neurophysiol 1996; 184-197
  • 3 Moon RY, Horne RS, Hauck FR. Sudden infant death syndrome. Lancet 2007; 370: 1578-1588
  • 4 Kellams A, Feldman-Winter L. Sudden Unexpected Infant Death: Keeping the Newborn Safe in Hospital and at Home. Clin Perinatol 2021; 48: 619-630
  • 5 Rognum TO. "Hjemmemonitorering" hindrer ikke krybbedød. Drivkrefter, styringsmuligheter og konsekvenser av ny teknologi ["Home monitoring" does not prevent crib death. Managing possibilities and results of new technology]. Tidsskr Nor Laegeforen 1995; 115: 2790-2793
  • 6 King D. Marketing wearable home baby monitors: real peace of mind?. BMJ 2014; 18: 349
  • 7 Bonafide CP, Localio AR, Ferro DF. et al. Accuracy of Pulse Oximetry-Based Home Baby Monitors. JAMA 2018; 320: 717-719
  • 8 Ranta J, Ilén E, Palmu K. et al. An openly available wearable, a diaper cover, monitors infant’s respiration and position during rest and sleep. Acta Paediatr 2021; 110: 2766-2771
  • 9 Fleming S, Thompson M, Stevens R. et al. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. Lancet 2011; 377: 1011-1018
  • 10 Eldib M, Philips W, Aghajan H. Discovering Human Activities from Binary Data in Smart Homes. Sensors (Basel) 2020; 20: 2513
  • 11 Lorato I, Stuijk S, Meftah M. et al. Towards Continuous Camera-Based Respiration Monitoring in Infants. Sensors (Basel) 2021; 21: 2268
  • 12 Oishi Y, Ohta H, Hirose T. et al. Combined effects of body position and sleep status on the cardiorespiratory stability of near-term infants. Sci Rep 2018; 8: 8845
  • 13 Blanik N, Heimann K, Pereira C. et al. Remote vital parameter monitoring in neonatology – robust, unobtrusive heart rate detection in a realistic clinical scenario. Biomed Tech (Berl) 2016; 61: 631-643
  • 14 Kim JD, Lee WH, Lee Y. et al. Non-contact respiration monitoring using impulse radio ultrawideband radar in neonates. R Soc Open Sci 2019; 6: 190149
  • 15 Lorato I, Stuijk S, Meftah M. et al. Automatic Separation of Respiratory Flow from Motion in Thermal Videos for Infant Apnea Detection.Sensors (Basel) 2021; 21: 6306
  • 16 Skadberg BT, Markestad T. Behaviour and physiological responses during prone and supine sleep in early infancy. Arch Dis Child 1997; 76: 320-324
  • 17 Terrill PI, Dakin C, Hughes I. et al. Nocturnal oxygen saturation profiles of healthy term infants. Arch Dis Child 2015; 100: 18-23
  • 18 Mohr MA, Fairchild KD, Patel M. et al. Quantification of periodic breathing in premature infants. Physiol Meas 2015; 36: 1415-1427
  • 19 Patel M, Mohr M, Lake D. et al. Clinical associations with immature breathing in preterm infants: part 2-periodic breathing. Pediatr Res 2016; 80: 28-34
  • 20 Poets CF, Southall DP. Patterns of oxygenation during periodic breathing in preterm infants. Early Hum Dev 1991; 26: 1-12
  • 21 Urlesberger B, Pichler G, Gradnitzer E. et al. Changes in cerebral blood volume and cerebral oxygenation during periodic breathing in term infants. Neuropediatrics 2000; 31: 75-81
  • 22 Razi NM, DeLauter M, Pandit PB. Periodic breathing and oxygen saturation in preterm infants at discharge. J Perinatol 2002; 22: 442-444