Radiopraxis 2023; 16(03): E85-E97
DOI: 10.1055/a-2119-0416

Künstliche Intelligenz in der Radiologie

Marie-Luise Kromrey
Sascha Grothe
Christopher Nell
Britta Rosenberg

Die klinische Radiologie mit ihren digitalen Daten ist geradezu prädestiniert für den erfolgreichen Einsatz der künstlichen Intelligenz (KI). Am Beispiel verschiedener praktischer Anwendungen wird nachfolgend dargestellt, wo und wie die KI in der Radiologie eingesetzt wird und dabei auch die Frage beantwortet, inwieweit sie Radiolog*innen ersetzen kann.

Publication History

Article published online:
08 September 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • Literatur

  • 1 Bowne-Anderson H. The difference between AI and machine learning. 2020. Im Internet (Stand: 31.03.2022)
  • 2 Kommission E. Bericht über die Auswirkungen künstlicher Intelligenz, des Internets der Dinge und der Robotik in Hinblick auf Sicherheit und Haftung. 2020
  • 3 Kaplan A, Haenlein M. Siri, Siri, in my hand: Whoʼs the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus Horizons 2018; 62: 15-25
  • 4 Visvikis D, Rest CCL, Jaouen V. et al. Artificial intelligence, machine (deep) learning and radio(geno)mics: definitions and nuclear medicine imaging applications. Eur J Nucl Med Mol I 2019; 46: 2630-2637
  • 5 Administration USF and D. Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices. 2021. Im Internet (Stand: 31.03.2022):
  • 6 Health E. Transforming healthcare with AI: The impact on the workforce and organisations. 2020. Im Internet (Stand: 31.03.2022)
  • 7 Stone M. What patients want from their doctors. BMJ 2003; 326: 1294-1294
  • 8 Turing AM. Computing Machinery and Intelligence. Mind 1950; LIX 433-460
  • 9 Motoyama M, Levchenko K, Kanich C et al. Re: CAPTCHAs – Understanding CAPTCHA-Solving Services in an Economic Context. In: USENIX Securityʼ10: Proceedings of the 19th USENIX conference on Security. 2010: 18 Im Internet (Stand: 31.03.2022):
  • 10 Mayerhoefer ME, Materka A, Langs G. et al. Introduction to Radiomics. J Nucl Med 2020; 61: 488-495 DOI: 10.2967/jnumed.118.222893.
  • 11 Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016; 278: 563-577
  • 12 Kromrey M-L, Tamada D, Johno H. et al. Reduction of respiratory motion artifacts in gadoxetate-enhanced MR with a deep learning-based filter using convolutional neural network. Eur Radiol 2020; 30: 5923-5932
  • 13 Arndt C, Güttler F, Heinrich A. et al. Deep Learning CT Image Reconstruction in Clinical Practice. Röfo 2020; 193: 252-261
  • 14 Maynard J, Okuchi S, Wastling S. et al. World Health Organization Grade II/III Glioma Molecular Status: Prediction by MRI Morphologic Features and Apparent Diffusion Coefficient. Radiology 2020; 298: E61-E61
  • 15 Berlis A. MRT-Modelle sagen Genstatus von Gliomen voraus. Röfo 2021; 193: 369-370
  • 16 Lambin P, Rios-Velazquez E, Leijenaar R. et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 2012; 48: 441-446
  • 17 Parmar C, Grossmann P, Rietveld D. et al. Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer. Frontiers Oncol 2015; 5: 272
  • 18 Zhou B, Khosla A, Lapedriza A. et al. Learning Deep Features for Discriminative Localization. Proceedings of the IEEE conference on computer vision and pattern recognition 2016; 2921-2929
  • 19 Müller-Peltzer K, Kretzschmar L, de Figueiredo GN. et al. Present Limitations of Artificial Intelligence in the Emergency Setting – Performance Study of a Commercial, Computer-Aided Detection Algorithm for Pulmonary Embolism. Rofo 2021; 193: 1436-1444
  • 20 van Timmeren JE, Cester D, Tanadini-Lang S. et al. Radiomics in medical imaging – “how-to” guide and critical reflection. Insights Imaging 2020; 11: 91