Hamostaseologie 2023; 43(05): 348-359
DOI: 10.1055/a-2118-2932
Review Article

Intravital Imaging of Thrombosis Models in Mice

Klytaimnistra Kiouptsi
1   Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
2   German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
,
Martina Casari
1   Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
,
Jonathan Mandel
1   Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
,
Zhenling Gao
1   Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
,
Carsten Deppermann
1   Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
2   German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
› Author Affiliations

Abstract

Intravital microscopy is a powerful tool to study thrombosis in real time. The kinetics of thrombus formation and progression in vivo is studied after inflicting damage to the endothelium through mechanical, chemical, or laser injury. Mouse models of atherosclerosis are also used to induce thrombus formation. Vessels of different sizes and from different vascular beds such as carotid artery or vena cava, mesenteric or cremaster arterioles, can be targeted. Using fluorescent dyes, antibodies, or reporter mouse strains allows to visualize key cells and factors mediating the thrombotic processes. Here, we review the latest literature on using intravital microscopy to study thrombosis as well as thromboinflammation following transient middle cerebral artery occlusion, infection-induced immunothrombosis, and liver ischemia reperfusion.



Publication History

Received: 02 May 2023

Accepted: 04 July 2023

Article published online:
19 October 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Massberg S, Gawaz M, Grüner S. et al. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J Exp Med 2003; 197 (01) 41-49
  • 2 Reinhardt C, von Brühl ML, Manukyan D. et al. Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation. J Clin Invest 2008; 118 (03) 1110-1122
  • 3 Savage B, Almus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 1998; 94 (05) 657-666
  • 4 Jäckel S, Kiouptsi K, Lillich M. et al. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood 2017; 130 (04) 542-553
  • 5 Tseng MT, Dozier A, Haribabu B, Graham UM. Transendothelial migration of ferric ion in FeCl3 injured murine common carotid artery. Thromb Res 2006; 118 (02) 275-280
  • 6 Eckly A, Hechler B, Freund M. et al. Mechanisms underlying FeCl3-induced arterial thrombosis. J Thromb Haemost 2011; 9 (04) 779-789
  • 7 Woollard KJ, Sturgeon S, Chin-Dusting JP, Salem HH, Jackson SP. Erythrocyte hemolysis and hemoglobin oxidation promote ferric chloride-induced vascular injury. J Biol Chem 2009; 284 (19) 13110-13118
  • 8 Bender M, Hagedorn I, Nieswandt B. Genetic and antibody-induced glycoprotein VI deficiency equally protects mice from mechanically and FeCl(3) -induced thrombosis. J Thromb Haemost 2011; 9 (07) 1423-1426
  • 9 Konstantinides S, Ware J, Marchese P, Almus-Jacobs F, Loskutoff DJ, Ruggeri ZM. Distinct antithrombotic consequences of platelet glycoprotein Ibalpha and VI deficiency in a mouse model of arterial thrombosis. J Thromb Haemost 2006; 4 (09) 2014-2021
  • 10 Kuijpers MJ, Gilio K, Reitsma S. et al. Complementary roles of platelets and coagulation in thrombus formation on plaques acutely ruptured by targeted ultrasound treatment: a novel intravital model. J Thromb Haemost 2009; 7 (01) 152-161
  • 11 Kuijpers MJ, Heemskerk JW. Intravital imaging of thrombus formation in small and large mouse arteries: experimentally induced vascular damage and plaque rupture in vivo. Methods Mol Biol 2012; 788: 3-19
  • 12 Koizumi J, Yoshida Y, Nakazawa T, Ooneda G. Experimental studies of ischemic brain edema. I. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn Stroke J 1986; 8: 1-8
  • 13 Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989; 20 (01) 84-91
  • 14 Braeuninger S, Kleinschnitz C, Nieswandt B, Stoll G. Focal cerebral ischemia. Methods Mol Biol 2012; 788: 29-42
  • 15 Canazza A, Minati L, Boffano C, Parati E, Binks S. Experimental models of brain ischemia: a review of techniques, magnetic resonance imaging, and investigational cell-based therapies. Front Neurol 2014; 5: 19
  • 16 Howells DW, Porritt MJ, Rewell SS. et al. Different strokes for different folks: the rich diversity of animal models of focal cerebral ischemia. J Cereb Blood Flow Metab 2010; 30 (08) 1412-1431
  • 17 Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 1986; 17 (03) 472-476
  • 18 Moran PM, Higgins LS, Cordell B, Moser PC. Age-related learning deficits in transgenic mice expressing the 751-amino acid isoform of human beta-amyloid precursor protein. Proc Natl Acad Sci U S A 1995; 92 (12) 5341-5345
  • 19 Mizuma A, You JS, Yenari MA. Targeting reperfusion injury in the age of mechanical thrombectomy. Stroke 2018; 49 (07) 1796-1802
  • 20 Stoll G, Nieswandt B. Thrombo-inflammation in acute ischaemic stroke - implications for treatment. Nat Rev Neurol 2019; 15 (08) 473-481
  • 21 Nieswandt B, Kleinschnitz C, Stoll G. Ischaemic stroke: a thrombo-inflammatory disease?. J Physiol 2011; 589 (17) 4115-4123
  • 22 Kleinschnitz C, Pozgajova M, Pham M, Bendszus M, Nieswandt B, Stoll G. Targeting platelets in acute experimental stroke: impact of glycoprotein Ib, VI, and IIb/IIIa blockade on infarct size, functional outcome, and intracranial bleeding. Circulation 2007; 115 (17) 2323-2330
  • 23 Deppermann C, Cherpokova D, Nurden P. et al. Gray platelet syndrome and defective thrombo-inflammation in Nbeal2-deficient mice. J Clin Invest 2013; 123 (08) 3331-3342
  • 24 Stegner D, Deppermann C, Kraft P. et al. Munc13-4-mediated secretion is essential for infarct progression but not intracranial hemostasis in acute stroke. J Thromb Haemost 2013; 11 (07) 1430-1433
  • 25 Dong X, Gao J, Zhang CY, Hayworth C, Frank M, Wang Z. Neutrophil membrane-derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke. ACS Nano 2019; 13 (02) 1272-1283
  • 26 Mostany R, Portera-Cailliau C. A craniotomy surgery procedure for chronic brain imaging. J Vis Exp 2008; (12) 680
  • 27 Desilles JP, Loyau S, Syvannarath V. et al. Alteplase reduces downstream microvascular thrombosis and improves the benefit of large artery recanalization in stroke. Stroke 2015; 46 (11) 3241-3248
  • 28 Göb V, Voll MG, Zimmermann L. et al. Infarct growth precedes cerebral thrombosis following experimental stroke in mice. Sci Rep 2021; 11 (01) 22887
  • 29 Ishikawa M, Vowinkel T, Stokes KY. et al. CD40/CD40 ligand signaling in mouse cerebral microvasculature after focal ischemia/reperfusion. Circulation 2005; 111 (13) 1690-1696
  • 30 Bonnard T, Hagemeyer CE. Ferric chloride-induced thrombosis mouse model on carotid artery and mesentery vessel. J Vis Exp 2015; (100) e52838
  • 31 Zhang Y, Ye J, Hu L. et al. Increased platelet activation and thrombosis in transgenic mice expressing constitutively active P2Y12. J Thromb Haemost 2012; 10 (10) 2149-2157
  • 32 Munnix IC, Strehl A, Kuijpers MJ. et al. The glycoprotein VI-phospholipase Cgamma2 signaling pathway controls thrombus formation induced by collagen and tissue factor in vitro and in vivo. Arterioscler Thromb Vasc Biol 2005; 25 (12) 2673-2678
  • 33 Rybaltowski M, Suzuki Y, Mogami H. et al. In vivo imaging analysis of the interaction between unusually large von Willebrand factor multimers and platelets on the surface of vascular wall. Pflugers Arch 2011; 461 (06) 623-633
  • 34 Leung FW, Su KC, Pique JM, Thiefin G, Passaro Jr E, Guth PH. Superior mesenteric artery is more important than inferior mesenteric artery in maintaining colonic mucosal perfusion and integrity in rats. Dig Dis Sci 1992; 37 (09) 1329-1335
  • 35 Collard CD, Gelman S. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology 2001; 94 (06) 1133-1138
  • 36 Abela CB, Homer-Vanniasinkham S. Clinical implications of ischaemia-reperfusion injury. Pathophysiology 2003; 9 (04) 229-240
  • 37 Parks DA, Granger DN. Contributions of ischemia and reperfusion to mucosal lesion formation. Am J Physiol 1986; 250 (6, Pt 1): G749-G753
  • 38 Cicalese L, Iyengar A, Subbotin V. et al. Protection afforded by pyruvate during acute rejection of small-bowel allografts is mediated by inhibition of oxygen-free radicals and cytolytic activity (perforin and granzyme-B mRNA expression) in activated leukocytes. Transplant Proc 1997; 29 (1-2): 704
  • 39 Thorburn T, Aali M, Lehmann C. Immune response to systemic inflammation in the intestinal microcirculation. Front Biosci 2018; 23 (04) 782-795
  • 40 Bayer F, Ascher S, Kiouptsi K, Kittner JM, Stauber RH, Reinhardt C. Colonization with altered Schaedler flora impacts leukocyte adhesion in mesenteric ischemia-reperfusion injury. Microorganisms 2021; 9 (08) 1601
  • 41 Ascher S, Wilms E, Pontarollo G. et al. Gut microbiota restricts NETosis in acute mesenteric ischemia-reperfusion injury. Arterioscler Thromb Vasc Biol 2020; 40 (09) 2279-2292
  • 42 Grover SP, Bendapudi PK, Yang M. et al. Injury measurements improve interpretation of thrombus formation data in the cremaster arteriole laser-induced injury model of thrombosis. J Thromb Haemost 2020; 18 (11) 3078-3085
  • 43 Falati S, Gross P, Merrill-Skoloff G, Furie BC, Furie B. Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat Med 2002; 8 (10) 1175-1181
  • 44 Chou J, Mackman N, Merrill-Skoloff G, Pedersen B, Furie BC, Furie B. Hematopoietic cell-derived microparticle tissue factor contributes to fibrin formation during thrombus propagation. Blood 2004; 104 (10) 3190-3197
  • 45 Duan X, Perveen R, Dandamudi A. et al. Pharmacologic targeting of Cdc42 GTPase by a small molecule Cdc42 activity-specific inhibitor prevents platelet activation and thrombosis. Sci Rep 2021; 11 (01) 13170
  • 46 Dubois C, Panicot-Dubois L, Gainor JF, Furie BC, Furie B. Thrombin-initiated platelet activation in vivo is vWF independent during thrombus formation in a laser injury model. J Clin Invest 2007; 117 (04) 953-960
  • 47 Atkinson BT, Jasuja R, Chen VM, Nandivada P, Furie B, Furie BC. Laser-induced endothelial cell activation supports fibrin formation. Blood 2010; 116 (22) 4675-4683
  • 48 Neyman M, Gewirtz J, Poncz M. Analysis of the spatial and temporal characteristics of platelet-delivered factor VIII-based clots. Blood 2008; 112 (04) 1101-1108
  • 49 Mangin P, Yap CL, Nonne C. et al. Thrombin overcomes the thrombosis defect associated with platelet GPVI/FcRgamma deficiency. Blood 2006; 107 (11) 4346-4353
  • 50 Mitrophanov AY, Merrill-Skoloff G, Grover SP. et al. Injury length and arteriole constriction shape clot growth and blood-flow acceleration in a mouse model of thrombosis. Arterioscler Thromb Vasc Biol 2020; 40 (09) 2114-2126
  • 51 Stolla M, Stefanini L, Roden RC. et al. The kinetics of αIIbβ3 activation determines the size and stability of thrombi in mice: implications for antiplatelet therapy. Blood 2011; 117 (03) 1005-1013
  • 52 Gromotowicz-Poplawska A, Flaumenhaft R, Gholami SK. et al. Enhanced thrombotic responses are associated with Striatin deficiency and aldosterone. J Am Heart Assoc 2021; 10 (22) e022975
  • 53 Revollo L, Merrill-Skoloff G, De Ceunynck K. et al. The secreted tyrosine kinase VLK is essential for normal platelet activation and thrombus formation. Blood 2022; 139 (01) 104-117
  • 54 Lutsey PL, Zakai NA. Epidemiology and prevention of venous thromboembolism. Nat Rev Cardiol 2023; 20 (04) 248-262
  • 55 López JA, Chen J. Pathophysiology of venous thrombosis. Thromb Res 2009; 123 (Suppl. 04) S30-S34
  • 56 Wang X, Smith PL, Hsu MY, Ogletree ML, Schumacher WA. Murine model of ferric chloride-induced vena cava thrombosis: evidence for effect of potato carboxypeptidase inhibitor. J Thromb Haemost 2006; 4 (02) 403-410
  • 57 Witsch T, Mauler M, Herr N. et al. A novel hollow and perforated flexible wire allows the safe and effective local application of thrombolytic therapy in a mouse model of deep vein thrombosis. J Thromb Thrombolysis 2014; 37 (04) 450-454
  • 58 Esmon CT. Basic mechanisms and pathogenesis of venous thrombosis. Blood Rev 2009; 23 (05) 225-229
  • 59 Payne H, Brill A. Stenosis of the inferior vena cava: a murine model of deep vein thrombosis. J Vis Exp 2017; (130) 56697
  • 60 Wrobleski SK, Farris DM, Diaz JA, Myers Jr DD, Wakefield TW. Mouse complete stasis model of inferior vena cava thrombosis. J Vis Exp 2011; (52) 2738
  • 61 Wakefield TW, Strieter RM, Wilke CA. et al. Venous thrombosis-associated inflammation and attenuation with neutralizing antibodies to cytokines and adhesion molecules. Arterioscler Thromb Vasc Biol 1995; 15 (02) 258-268
  • 62 von Brühl ML, Stark K, Steinhart A. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209 (04) 819-835
  • 63 Mwiza JMN, Lee RH, Paul DS. et al. Both G protein-coupled and immunoreceptor tyrosine-based activation motif receptors mediate venous thrombosis in mice. Blood 2022; 139 (21) 3194-3203
  • 64 Schönfelder T, Jäckel S, Wenzel P. Mouse models of deep vein thrombosis. Gefasschirurgie 2017; 22 (Suppl. 01) 28-33
  • 65 Diaz JA, Obi AT, Myers Jr DD. et al. Critical review of mouse models of venous thrombosis. Arterioscler Thromb Vasc Biol 2012; 32 (03) 556-562
  • 66 Brandt M, Schönfelder T, Schwenk M. et al. Deep vein thrombus formation induced by flow reduction in mice is determined by venous side branches. Clin Hemorheol Microcirc 2014; 56 (02) 145-152
  • 67 Geddings J, Aleman MM, Wolberg A, von Brühl ML, Massberg S, Mackman N. Strengths and weaknesses of a new mouse model of thrombosis induced by inferior vena cava stenosis: communication from the SSC of the ISTH. J Thromb Haemost 2014; 12 (04) 571-573
  • 68 Stark K, Massberg S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Rev Cardiol 2021; 18 (09) 666-682
  • 69 Beristain-Covarrubias N, Perez-Toledo M, Thomas MR, Henderson IR, Watson SP, Cunningham AF. Understanding infection-induced thrombosis: lessons learned from animal models. Front Immunol 2019; 10: 2569
  • 70 Hitchcock JR, Cook CN, Bobat S. et al. Inflammation drives thrombosis after Salmonella infection via CLEC-2 on platelets. J Clin Invest 2015; 125 (12) 4429-4446
  • 71 Beristain-Covarrubias N, Perez-Toledo M, Flores-Langarica A. et al. Salmonella-induced thrombi in mice develop asynchronously in the spleen and liver and are not effective bacterial traps. Blood 2019; 133 (06) 600-604
  • 72 Levi M, Ten Cate H. Disseminated intravascular coagulation. N Engl J Med 1999; 341 (08) 586-592
  • 73 van der Poll T, Opal SM. Host-pathogen interactions in sepsis. Lancet Infect Dis 2008; 8 (01) 32-43
  • 74 van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol 2017; 17 (07) 407-420
  • 75 Berube BJ, Bubeck Wardenburg J. Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins (Basel) 2013; 5 (06) 1140-1166
  • 76 Parimon T, Li Z, Bolz DD. et al. Staphylococcus aureus α-hemolysin promotes platelet-neutrophil aggregate formation. J Infect Dis 2013; 208 (05) 761-770
  • 77 Surewaard BGJ, Thanabalasuriar A, Zeng Z. et al. α-Toxin induces platelet aggregation and liver injury during Staphylococcus aureus sepsis. Cell Host Microbe 2018; 24 (02) 271-284.e3
  • 78 Surewaard BGJ, Kubes P. Measurement of bacterial capture and phagosome maturation of Kupffer cells by intravital microscopy. Methods 2017; 128: 12-19
  • 79 Agopian VG, Harlander-Locke MP, Markovic D. et al. Evaluation of early allograft function using the liver graft assessment following transplantation risk score model. JAMA Surg 2018; 153 (05) 436-444
  • 80 Eltzschig HK, Eckle T. Ischemia and reperfusion – from mechanism to translation. Nat Med 2011; 17 (11) 1391-1401
  • 81 Zhai Y, Petrowsky H, Hong JC, Busuttil RW, Kupiec-Weglinski JW. Ischaemia-reperfusion injury in liver transplantation – from bench to bedside. Nat Rev Gastroenterol Hepatol 2013; 10 (02) 79-89
  • 82 Selzner M, Selzner N, Jochum W, Graf R, Clavien P-A. Increased ischemic injury in old mouse liver: an ATP-dependent mechanism. Liver Transpl 2007; 13 (03) 382-390
  • 83 Guan L-Y, Fu PY, Li PD. et al. Mechanisms of hepatic ischemia-reperfusion injury and protective effects of nitric oxide. World J Gastrointest Surg 2014; 6 (07) 122-128
  • 84 Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol 2013; 59 (03) 583-594
  • 85 Nakamura K, Kageyama S, Ke B. et al. Sirtuin 1 attenuates inflammation and hepatocellular damage in liver transplant ischemia/Reperfusion: from mouse to human. Liver Transpl 2017; 23 (10) 1282-1293
  • 86 Zhang XJ, Cheng X, Yan ZZ. et al. An ALOX12-12-HETE-GPR31 signaling axis is a key mediator of hepatic ischemia-reperfusion injury. Nat Med 2018; 24 (01) 73-83
  • 87 Li P, He K, Li J, Liu Z, Gong J. The role of Kupffer cells in hepatic diseases. Mol Immunol 2017; 85: 222-229
  • 88 Zhang J, Xu P, Song P. et al. CCL2-CCR2 signaling promotes hepatic ischemia/reperfusion injury. J Surg Res 2016; 202 (02) 352-362
  • 89 Yang X, Liang L, Zong C. et al. Kupffer cells-dependent inflammation in the injured liver increases recruitment of mesenchymal stem cells in aging mice. Oncotarget 2016; 7 (02) 1084-1095
  • 90 Lai X, Gong J, Wang W. et al. Acetyl-3-aminoethyl salicylate ameliorates hepatic ischemia/reperfusion injury and liver graft survival through a high-mobility group box 1/toll-like receptor 4-dependent mechanism. Liver Transpl 2019; 25 (08) 1220-1232
  • 91 de Oliveira THC, Marques PE, Poosti F. et al. Intravital microscopic evaluation of the effects of a CXCR2 antagonist in a model of liver ischemia reperfusion injury in mice. Front Immunol 2018; 8: 1917
  • 92 Faust N, Varas F, Kelly LM, Heck S, Graf T. Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 2000; 96 (02) 719-726
  • 93 Marques PE, Oliveira AG, Chang L, Paula-Neto HA, Menezes GB. Understanding liver immunology using intravital microscopy. J Hepatol 2015; 63 (03) 733-742
  • 94 Cywes R, Packham MA, Tietze L. et al. Role of platelets in hepatic allograft preservation injury in the rat. Hepatology 1993; 18 (03) 635-647
  • 95 Cywes R, Mullen JB, Stratis MA. et al. Prediction of the outcome of transplantation in man by platelet adherence in donor liver allografts. Evidence of the importance of prepreservation injury. Transplantation 1993; 56 (02) 316-323
  • 96 Yadav SS, Howell DN, Steeber DA, Harland RC, Tedder TF, Clavien P-A. P-Selectin mediates reperfusion injury through neutrophil and platelet sequestration in the warm ischemic mouse liver. Hepatology 1999; 29 (05) 1494-1502
  • 97 Khandoga A, Biberthaler P, Messmer K, Krombach F. Platelet-endothelial cell interactions during hepatic ischemia-reperfusion in vivo: a systematic analysis. Microvasc Res 2003; 65 (02) 71-77
  • 98 Tedder TF, Steeber DA, Chen A, Engel P. The selectins: vascular adhesion molecules. FASEB J 1995; 9 (10) 866-873
  • 99 Khandoga A, Biberthaler P, Enders G. et al. P-selectin mediates platelet-endothelial cell interactions and reperfusion injury in the mouse liver in vivo. Shock 2002; 18 (06) 529-535
  • 100 Mende K, Reifart J, Rosentreter D. et al. Targeting platelet migration in the postischemic liver by blocking protease-activated receptor 4. Transplantation 2014; 97 (02) 154-160
  • 101 Khandoga A, Biberthaler P, Enders G. et al. Platelet adhesion mediated by fibrinogen-intercellular adhesion molecule-1 binding induces tissue injury in the postischemic liver in vivo. Transplantation 2002; 74 (05) 681-688
  • 102 Jaeschke H. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning. Am J Physiol Gastrointest Liver Physiol 2003; 284 (01) G15-G26
  • 103 Gow AJ, Thom SR, Ischiropoulos H. Nitric oxide and peroxynitrite-mediated pulmonary cell death. Am J Physiol 1998; 274 (01) L112-L118
  • 104 Selzner N, Rudiger H, Graf R, Clavien PA. Protective strategies against ischemic injury of the liver. Gastroenterology 2003; 125 (03) 917-936
  • 105 Vodovotz Y, Kim PK, Bagci EZ. et al. Inflammatory modulation of hepatocyte apoptosis by nitric oxide: in vivo, in vitro, and in silico studies. Curr Mol Med 2004; 4 (07) 753-762
  • 106 Lesurtel M, Graf R, Aleil B. et al. Platelet-derived serotonin mediates liver regeneration. Science 2006; 312 (5770) 104-107
  • 107 Nocito A, Georgiev P, Dahm F. et al. Platelets and platelet-derived serotonin promote tissue repair after normothermic hepatic ischemia in mice. Hepatology 2007; 45 (02) 369-376
  • 108 Zhang H, Goswami J, Varley P. et al. Hepatic surgical stress promotes systemic immunothrombosis that results in distant organ injury. Front Immunol 2020; 11: 987
  • 109 Panteleev MA, Korin N, Reesink KD. et al. Wall shear rates in human and mouse arteries: standardization of hemodynamics for in vitro blood flow assays: communication from the ISTH SSC subcommittee on biorheology. J Thromb Haemost 2021; 19 (02) 588-595
  • 110 Allan-Rahill NH, Lamont MRE, Chilian WM, Nishimura N, Small DM. Intravital microscopy of the beating murine heart to understand cardiac leukocyte dynamics. Front Immunol 2020; 11: 92
  • 111 Kalia N. A historical review of experimental imaging of the beating heart coronary microcirculation in vivo. J Anat 2023; 242 (01) 3-16
  • 112 Mahmoud O, El-Sakka M, Janssen BGH. Two-step machine learning method for the rapid analysis of microvascular flow in intravital video microscopy. Sci Rep 2021; 11 (01) 10047