Subscribe to RSS
DOI: 10.1055/a-2088-9779
Digitale Weichteilvorhersage im Kontext der kieferorthopädisch-kieferchirurgischen Behandlung
Digital soft tissue prediction in the context of orthognathic treatment
Zusammenfassung
Operative Eingriffe im Rahmen einer kieferorthopädisch-kieferchirurgischen Behandlung werden zunehmend digital geplant. Moderne Softwarelösungen erlauben neben der virtuellen Kieferumstellung auch die Simulation einer möglichen Weichgewebsreaktion. Etablierte Programme werden hinsichtlich der Simulationsmöglichkeiten vorgestellt und mögliche Unterschiede und Fehlerquellen aufgezeigt.
Abstract
Surgical interventions in the context of interdisciplinary orthognathic treatment are increasingly being planned digitally. Modern software solutions allow not only virtual jaw displacement but also soft tissue prediction. Established programs will be presented with regard to simulation possibilities and possible differences as well as sources of error will be pointed out.
Publication History
Article published online:
01 August 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Rustemeyer J, Martin A.. Soft tissue response in orthognathic surgery patients treated by bimaxillary osteotomy: cephalometry compared with 2-D photogrammetry. Oral Maxillofac Surg 2013; 17: 33-41 DOI: 10.1007/s10006-012-0330-0.
- 2 Möhlhenrich SC, Kötter F, Peters F. et al. Effects of different surgical techniques and displacement distances on the soft tissue profile via orthodontic-orthognathic treatment of class II and class III malocclusions. Head Face Med 2021; 17: 13 DOI: 10.1186/s13005-021-00264-4.
- 3 Ghassemi M, Hilgers RD, Jamilian A. et al. Consideration of effect of the amount of mandibular setback on the submental region in the planning of orthodontic-orthognathic treatment. Br J Oral Maxillofac Surg 2014; 52: 334-339 DOI: 10.1016/j.bjoms.2014.01.009.
- 4 Ghassemi M, Hilgers RD, Jamilian A. et al. Effect of maxillary advancement on the change in the soft tissues after treatment of patients with class III malocclusion. Br J Oral Maxillofac Surg 2015; 53: 754-759 DOI: 10.1016/j.bjoms.2015.06.001.
- 5 Mobarak KA, Espeland L, Krogstad O. et al. Soft tissue profile changes following mandibular advancement surgery: predictability and long-term outcome. Am J Orthod Dentofacial Orthop 2001; 119: 353-367 DOI: 10.1067/mod.2001.112258.
- 6 Joachim MV, Brosh Y, Daoud F. et al. Soft Tissue Movement in Orthognathic Surgery: Does Pre-Operative Soft Tissue Thickness Affect Movement Change. Appl Sci 2022; 12: 8170 DOI: 10.3390/app12168170.
- 7 San Miguel Moragas J, Oth O, Buttner M. et al. A systematic review on soft-to-hard tissue ratios in orthognathic surgery part II: Chin procedures. J Craniomaxillofac Surg 2015; 43: 1530-1540 DOI: 10.1016/j.jcms.2015.07.032.
- 8 San Miguel Moragas J, Van Cauteren W, Mommaerts MY.. A systematic review on soft-to-hard tissue ratios in orthognathic surgery part I: maxillary repositioning osteotomy. J Craniomaxillofac Surg 2014; 42: 1341-1351 DOI: 10.1016/j.jcms.2014.03.024.
- 9 Olate S, Zaror C, Blythe JN. et al. A systematic review of soft-to-hard tissue ratios in orthognathic surgery. Part III: Double jaw surgery procedures. J Craniomaxillofac Surg 2016; 44: 1599-1606 DOI: 10.1016/j.jcms.2016.08.016.
- 10 Olate S, Zaror C, Mommaerts MY.. A systematic review of soft-to-hard tissue ratios in orthognathic surgery. Part IV: 3D analysis – Is there evidence?. J Craniomaxillofac Surg 2017; 45: 1278-1286 DOI: 10.1016/j.jcms.2017.05.013.
- 11 Chang YJ, Ruellas ACO, Yatabe MS. et al. Soft Tissue Changes Measured With Three-Dimensional Software Provides New Insights for Surgical Predictions. J Oral Maxillofac Surg 2017; 75: 2191-2201 DOI: 10.1016/j.joms.2017.05.010.
- 12 Lai HC, Denadai R, Ho CT. et al. Effect of Le Fort I Maxillary Advancement and Clockwise Rotation on the Anteromedial Cheek Soft Tissue Change in Patients with Skeletal Class III Pattern and Midface Deficiency: A 3D Imaging-Based Prediction Study. J Clin Med 2020; 9 DOI: 10.3390/jcm9010262.
- 13 Bernstein JM, Daly MJ, Chan H. et al. Accuracy and reproducibility of virtual cutting guides and 3D-navigation for osteotomies of the mandible and maxilla. PLoS One 2017; 12: e0173111 DOI: 10.1371/journal.pone.0173111.
- 14 Möhlhenrich SC, Kamal M, Peters F. et al. Bony contact area and displacement of the temporomandibular joint after high-oblique and bilateral sagittal split osteotomy: a computer-simulated comparison. Br J Oral Maxillofac Surg 2016; 54: 306-311 DOI: 10.1016/j.bjoms.2015.12.020.
- 15 Jaisinghani S, Adams NS, Mann RJ. et al. Virtual Surgical Planning in Orthognathic Surgery. Eplasty 2017; 17: ic1
- 16 Zavattero E, Romano M, Gerbino G. et al. Evaluation of the Accuracy of Virtual Planning in Orthognathic Surgery: A Morphometric Study. J Craniofac Surg 2019; 30: 1214-1220 DOI: 10.1097/SCS.0000000000005355.
- 17 Gurusamy K, Aggarwal R, Palanivelu L. et al. Systematic review of randomized controlled trials on the effectiveness of virtual reality training for laparoscopic surgery. Br J Surg 2008; 95: 1088-1097 DOI: 10.1002/bjs.6344.
- 18 Wrzosek MK, Peacock ZS, Laviv A. et al. Comparison of time required for traditional versus virtual orthognathic surgery treatment planning. Int J Oral Maxillofac Surg 2016; 45: 1065-1069 DOI: 10.1016/j.ijom.2016.03.012.
- 19 Resnick CM, Inverso G, Wrzosek M. et al. Is There a Difference in Cost Between Standard and Virtual Surgical Planning for Orthognathic Surgery?. J Oral Maxillofac Surg 2016; 74: 1827-1833 DOI: 10.1016/j.joms.2016.03.035.
- 20 Winterhalder P, Ayoub N, Möhlhenrich SC. et al. Advances and limits in planning and implementing orthognathic surgery. Dtsch Zahnärztl Z Int 2020; 2: 181-187 DOI: 10.3238/dzz-int.2020.0181–0187.
- 21 Modabber A, Peters F, Brokmeier A. et al. Influence of Connecting Two Standalone Mobile Three-Dimensional Scanners on Accuracy Comparing with a Standard Device in Facial Scanning. J Oral Maxillofac Res 2016; 7: e4 DOI: 10.5037/jomr.2016.7404.
- 22 Modabber A, Peters F, Kniha K. et al. Evaluation of the accuracy of a mobile and a stationary system for three-dimensional facial scanning. J Craniomaxillofac Surg 2016; 44: 1719-1724 DOI: 10.1016/j.jcms.2016.08.008.
- 23 Peters F, Möhlhenrich SC, Ayoub N. et al. The use of mobile 3D scanners in maxillofacial surgery. Int J Comput Dent 2016; 19: 217-230
- 24 Petrides G, Clark JR, Low H. et al. Three-dimensional scanners for soft-tissue facial assessment in clinical practice. J Plast Reconstr Aesthet Surg 2021; 74: 605-614 DOI: 10.1016/j.bjps.2020.08.050.
- 25 Knoops PG, Beaumont CA, Borghi A. et al. Comparison of three-dimensional scanner systems for craniomaxillofacial imaging. J Plast Reconstr Aesthet Surg 2017; 70: 441-449 DOI: 10.1016/j.bjps.2016.12.015.
- 26 Olivetti ECNS, Marcolin F, Vezzetti E, Sotong JPA, Zavattero ERG.. 3D soft-tissue prediction methodologies for orthognathic surgery—a literature review. Appl Sci 2019; 9: 4550 DOI: 10.3390/app9214550.
- 27 Modabber A, Baron T, Peters F. et al. Comparison of soft tissue simulations between two planning software programs for orthognathic surgery. Sci Rep 2022; 12: 5013 DOI: 10.1038/s41598-022-08991-7.
- 28 Lo LJ, Weng JL, Ho CT. et al. Three-dimensional region-based study on the relationship between soft and hard tissue changes after orthognathic surgery in patients with prognathism. PLoS One 2018; 13: e0200589 DOI: 10.1371/journal.pone.0200589.
- 29 Ahmad Akhoundi MS, Shirani G, Arshad M. et al. Comparison of an imaging software and manual prediction of soft tissue changes after orthognathic surgery. J Dent (Tehran) 2012; 9: 178-187
- 30 Knoops PGM, Borghi A, Breakey RWF. et al. Three-dimensional soft tissue prediction in orthognathic surgery: a clinical comparison of Dolphin, ProPlan CMF, and probabilistic finite element modelling. Int J Oral Maxillofac Surg 2019; 48: 511-518 DOI: 10.1016/j.ijom.2018.10.008.
- 31 Wang CH, Randazzo L.. Evolution of imaging and management systems in orthodontics. Am J Orthod Dentofacial Orthop 2016; 149: 798-805 DOI: 10.1016/j.ajodo.2016.03.016.
- 32 Knoops PGM, Borghi A, Breakey RWF. et al. Three-dimensional soft tissue prediction in orthognathic surgery: a clinical comparison of Dolphin, ProPlan CMF, and probabilistic finite element modelling. Int J Oral Maxillofac Surg 2018; DOI: 10.1016/j.ijom.2018.10.008.
- 33 Mollemans W, Schutyser F, Nadjmi N. et al. Predicting soft tissue deformations for a maxillofacial surgery planning system: from computational strategies to a complete clinical validation. Med Image Anal 2007; 11: 282-301 DOI: 10.1016/j.media.2007.02.003.
- 34 Mundluru T, Almukhtar A, Ju X. et al. The accuracy of three-dimensional prediction of soft tissue changes following the surgical correction of facial asymmetry: An innovative concept. Int J Oral Maxillofac Surg 2017; 46: 1517-1524 DOI: 10.1016/j.ijom.2017.04.017.
- 35 Shirota T, Shiogama S, Asama Y. et al. CAD/CAM splint and surgical navigation allows accurate maxillary segment positioning in Le Fort I osteotomy. Heliyon 2019; 5: e02123 DOI: 10.1016/j.heliyon.2019.e02123.
- 36 Zhang N, Liu S, Hu Z. et al. Accuracy of virtual surgical planning in two-jaw orthognathic surgery: comparison of planned and actual results. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122: 143-151 DOI: 10.1016/j.oooo.2016.03.004.
- 37 Donatsky O, Bjorn-Jorgensen J, Holmqvist-Larsen M. et al. Computerized cephalometric evaluation of orthognathic surgical precision and stability in relation to maxillary superior repositioning combined with mandibular advancement or setback. J Oral Maxillofac Surg 1997; 55: 1071-1079 discussion 1079-1080 DOI: 10.1016/s0278-2391(97)90282-2.
- 38 Nadjmi N, Tehranchi A, Azami N. et al. Comparison of soft-tissue profiles in Le Fort I osteotomy patients with Dolphin and Maxilim softwares. Am J Orthod Dentofacial Orthop 2013; 144: 654-662 DOI: 10.1016/j.ajodo.2013.06.019.
- 39 Peterman RJ, Jiang S, Johe R. et al. Accuracy of Dolphin visual treatment objective (VTO) prediction software on class III patients treated with maxillary advancement and mandibular setback. Prog Orthod 2016; 17: 19 DOI: 10.1186/s40510-016-0132-2.
- 40 Shafi MI, Ayoub A, Ju X. et al. The accuracy of three-dimensional prediction planning for the surgical correction of facial deformities using Maxilim. Int J Oral Maxillofac Surg 2013; 42: 801-806 DOI: 10.1016/j.ijom.2013.01.015.
- 41 Nadjmi N, Defrancq E, Mollemans W. et al. Quantitative validation of a computer-aided maxillofacial planning system, focusing on soft tissue deformations. Ann Maxillofac Surg 2014; 4: 171-175 DOI: 10.4103/2231-0746.147112.
- 42 Hou L, He Y, Yi B. et al. Evaluation of soft tissue prediction accuracy for orthognathic surgery with skeletal class III malocclusion using maxillofacial regional aesthetic units. Clin Oral Investig 2023; 27: 173-182 DOI: 10.1007/s00784-022-04705-5.
- 43 Lee KJC, Tan SL, Low HYA. et al. Accuracy of 3-dimensional soft tissue prediction for orthognathic surgery in a Chinese population. J Stomatol Oral Maxillofac Surg 2022; 123: 551-555 DOI: 10.1016/j.jormas.2021.08.001.
- 44 Resnick CM, Dang RR, Glick SJ. et al. Accuracy of three-dimensional soft tissue prediction for Le Fort I osteotomy using Dolphin 3D software: a pilot study. Int J Oral Maxillofac Surg 2017; 46: 289-295 DOI: 10.1016/j.ijom.2016.10.016.
- 45 Demirsoy KK, Kurt G.. Accuracy of 3 Soft Tissue Prediction Methods After Double-Jaw Orthognathic Surgery in Class III Patients. Ann Plast Surg 2022; 88: 323-329 DOI: 10.1097/SAP.0000000000002988.
- 46 Elshebiny T, Morcos S, Mohammad A. et al. Accuracy of Three-Dimensional Soft Tissue Prediction in Orthognathic Cases Using Dolphin Three-Dimensional Software. J Craniofac Surg 2019; 30: 525-528 DOI: 10.1097/SCS.0000000000005037.
- 47 Liebregts J, Xi T, Timmermans M. et al. Accuracy of three-dimensional soft tissue simulation in bimaxillary osteotomies. J Craniomaxillofac Surg 2015; 43: 329-335 DOI: 10.1016/j.jcms.2014.12.012.