CC BY 4.0 · SynOpen 2023; 07(01): 29-32
DOI: 10.1055/a-1996-8940
letter

Organocatalytic Synthesis of γ-Amino Acid Precursors via Masked Acetaldehyde under Micellar Catalysis

Maria Edith Casacchia
a   Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 L’Aquila, Italy
b   IUSS Scuola Universitaria Superiore di Pavia, Palazzo del Broletto, Piazza della Vittoria, 15 27100, Pavia, Italy
,
Giuliana Giorgianni
a   Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 L’Aquila, Italy
,
Elena Allegritti
a   Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 L’Aquila, Italy
,
Luisa Giansanti
a   Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 L’Aquila, Italy
,
a   Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 L’Aquila, Italy
c   INSTM, Consorzio Nazionale per la Scienza e Tecnologia dei Materiali, RU L’Aquila, Italy
,
a   Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 L’Aquila, Italy
› Author Affiliations
G.G. is grateful to Ministero dell'Università e della Ricerca (PON-DOT13OV2OC) for an industrial PhD fellowship. F.P. also thanks Ministero dell'Università e della Ricerca (PON-AIM1842894, CUP-E18D19000560001) for funding this research.


Abstract

The development of micellar catalysis offers a sustainable alternative to organic solvents, and represents an environmental milestone in organic synthesis. Here, the first Michael addition of masked acetaldehyde under neutral, cationic and anionic micellar catalysis is reported, affording the products in high yields and enantiomeric excess, despite the use of water as solvent.

Supporting Information



Publication History

Received: 15 November 2022

Accepted after revision: 12 December 2022

Accepted Manuscript online:
12 December 2022

Article published online:
30 January 2023

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Strukul G, Fabris F, Scarso A. In Supramolecular Catalysis . van Leeuwen PW, Raynal M. Wiley-VCH; Weinheim: 2022: 451
    • 1b Cortes-Clerget M, Kincaid JR. A, Akporji N, Lipshutz BH. In Supramolecular Catalysis . van Leeuwen PW, Raynal M. Wiley-VCH; Weinheim: 2022: 467
    • 1c Scarso A, Strukul G. In Green Synthetic Processes and Procedures . RSC; London: 2019: 268
    • 1d Scarso A. In Encyclopedia of Inorganic and Bioinorganic Chemistry . Scott RA. Wiley-VCH; Weinheim: 2016: 1
    • 1e Borrego E, Caballero A, Pérez PJ. Organometallics 2022; 41: 3084 DOI: 10.1021/acs.organomet.2c00309.
    • 1f Lorenzetto T, Frigatti D, Fabris F, Scarso A. Adv. Synth. Catal. 2022; 364: 1776
    • 1g Shen T, Zhou S, Ruan J, Chen X, Liu X, Ge X, Qian C. Adv. Colloid Interface Sci. 2021; 287: 102299
    • 1h La Sorella G, Strukul G, Scarso A. Green Chem. 2015; 17: 644
  • 2 Zimmerman JB, Anastas PT, Erythropel HC, Leitner W. Science 2020; 367: 397
  • 3 Lei Z, Chen B, Koo Y.-M, MacFarlane DR. Chem. Rev. 2017; 117: 6633
  • 4 Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein JM, Horton A, Adhikari L, Zelovich T, Doherty BW, Gurkan B, Maginn EJ, Ragauskas A, Dadmun M, Zawodzinski TA, Baker GA, Tuckerman ME, Savinell RF, Sangoro JR. Chem. Rev. 2021; 121: 1232
  • 5 Zhang W. Green Chem. 2009; 11: 911
  • 6 Noyori R. Chem. Rev. 1999; 99: 353
  • 7 García-García P, Ladépêche A, Halder R, List B. Angew. Chem. Int. Ed. 2008; 47: 4719
    • 8a Hayashi Y, Itoh T, Ohkubo M, Ishikawa H. Angew. Chem. Int. Ed. 2008; 47: 4722
    • 8b Ishikawa H, Honma M, Hayashi Y. Angew. Chem. Int. Ed. 2011; 50: 2824
    • 9a Meng X.-L, Liu T, Sun Z.-W, Wang J.-C, Peng F.-Z, Shao Z.-H. Org. Lett. 2014; 16: 3044
    • 9b Feu KS, de la Torre AF, Silva S, de Moraes MA. F. Jr, Corrêa AG, Paixão MW. Green Chem. 2014; 16: 3169
    • 9c Ramachary DB, Reddy PS, Prasad MS. Eur. J. Org. Chem. 2014; 3076
    • 9d Fan X, Rodríguez-Escrich C, Sayalero S, Pericàs MA. Chem. Eur. J. 2013; 19: 10814
    • 9e Geertsema EM, Miao Y, Tepper PG, Dehaan P, Zandvoort E, Poelarends GJ. Chem. Eur. J. 2013; 19: 14407
    • 9f Qiao Y, He J, Ni B, Headley AD. Adv. Synth. Catal. 2012; 354: 2849
    • 9g Alza E, Pericàs MA. Adv. Synth. Catal. 2009; 351: 3051
  • 10 Giorgianni G, Nori V, Baschieri A, Palombi L, Carlone A. Catalysts 2020; 11: 10
    • 11a Nori V, Sinibaldi A, Giorgianni G, Pesciaioli F, Di Donato F, Cocco E, Biancolillo A, Landa A, Carlone A. Chem. Eur. J. 2022; 28: e202104524
    • 11b Nori V, Sinibaldi A, Pesciaioli F, Carlone A. Synthesis 2022; 54: 4246
  • 12 Palomo C, Landa A, Mielgo A, Oiarbide M, Puente Á, Vera S. Angew. Chem. Int. Ed. 2007; 46: 8431

    • For selected examples of organocatalytic reactions under micellar catalysis, where the catalyst is covalently bound with the surfactant, see:
    • 13a Delgado JA. C, Vicente FE. M, de la Torre AF, Fernandes VA, Corrêa AG, Paixão MW. New J. Chem. 2021; 45: 14050
    • 13b Soares BM, Aguilar AM, Silva ER, Coutinho-Neto MD, Hamley IW, Reza M, Ruokolainen J, Alves WA. Phys. Chem. Chem. Phys. 2017; 19: 1181
    • 13c Neumann LN, Baker MB, Leenders CM. A, Voets IK, Lafleur RP. M, Palmans AR. A, Meijer EW. Org. Biomol. Chem. 2015; 13: 7711
    • 13d Lipshutz BH, Ghorai S. Org. Lett. 2012; 14: 422
  • 14 García-García P, Moreno JM, Díaz U, Bruix M, Corma A. Nat. Commun. 2016; 7: 10835
  • 15 For further information see the Supporting Information.
  • 16 Asymmetric Michael Addition of Acetaldehyde Dimethyl Acetal Performed in Micelles; General Procedure: Acetaldehyde dimethyl acetal 2 (2–4 equiv) was added to a 4 mL scintillation vial equipped with a magnetic bar, containing a solution 50 mM of Triton X-100 (31 mg, 0.05 mmol, 0.25 equiv) in water (1 mL), (S)-diphenyltrimethylsiloxymethylpyrrolidine 3 (6.5 mg, 0.02 mmol, 0.1 equiv), nitroalkene 1ae (0.2 mmol, 1 equiv), Amberlyst-15 (4.5 mg, 10 mol%), under stirring, and the reaction mixture was stirred at room temperature for the required time. Brine (1 mL) was then added and the aqueous mixture was extracted with THF (1 mL), and CHCl3 (3 × 1 mL). The combined organic layers were dried over MgSO4 and concentrated in vacuo after filtration. The crude mixture was purified by flash chromatography on SiO2 using a mixture of petroleum ether/ethyl acetate 9:1 v/v to give the desired product. NMR spectra of previously reported compounds were in agreement with those of the authentic samples and/or available literature data. Information can be used for the characterization data of other products. (S)-4-Nitro-3-phenylbutanal (4a): Synthesized in accordance with the general procedure for asymmetric Michael addition of acetaldehyde dimethyl acetal performed in micelles, using acetaldehyde dimethyl acetal 2 (42.2 μL, 0.4 mmol) and trans-β-nitrostyrene 1 (30 mg, 0.2 mmol). The reaction mixture was stirred at room temperature for 20 h. The desired product (yield: 35 mg, 0.18 mmol, 90%) was obtained as a pale-yellow oil. 1H NMR (400 MHz, CDCl3, 303 K): δ = 9.72 (s, 1 H), 7.37 (t, J = 7.3 Hz, 2 H), 7.31 (d, J = 6.1 Hz, 1 H), 7.28–7.23 (m, 2 H), 4.68 (dd, J = 12.5, 7.2 Hz, 1 H), 4.62 (dd, J = 12.5, 7.5 Hz, 1 H), 4.10 (m, 1 H), 2.97 (d, J = 7.3 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 198.7, 138.2, 129.2, 128.1, 127.4, 79.4, 46.4, 38.0. HPLC (Lux 3μm-cellulose 1, hexane/i-propanol 90:10, flow: 0.5 mL/min, λ = 210 nm): tR = 19.6 (minor), 24.7 (major) min. [α]D 25 = –18.13 (c = 0.0016 g/mL, CHCl3). All analytical data were in good accordance with reported data.10