Synlett, Table of Contents Synlett 2023; 34(08): 970-974DOI: 10.1055/a-1996-2853 letter Denitrosation of Aryl-N-nitrosamines by a Transnitrosation Strategy Using Ethanethiol and p-Toluenesulfonic Acid under Mild Reaction Conditions Vimlesh Kumar Kanaujiya a Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India , Varsha Tiwari a Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India , Siddharth Baranwal a Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India , Vandana Srivastava a Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India , Jeyakumar Kandasamy ∗ a Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India b Department of Chemistry, Pondicherry University, Pondicherry, 605014, India› Author AffiliationsRecommend Article Abstract Buy Article All articles of this category Abstract A convenient and practical route is reported for the denitrosation of aryl-N-nitrosamines under mild reaction conditions using ethanethiol and PTSA. The reactions proceeds at room temperature and the amines are obtained in good to excellent yields. Many functional groups that are susceptible to reduction were stable during the denitrosation. A broad substrate scope and easy operations are salient features of this method. Key words Key wordsamines - nitrosamines - denitrosation - metal-free reaction - ethanethiol - transnitrosation Full Text References References and Notes 1 Current address: Department of Chemistry, Mahant Darshan Das Mahila Mahavidyalaya, Muzaffarpur, Bihar-842002, India. 2 Current address: Department of Chemistry, Kashi Naresh Govt. PG College, Bhadohi, Uttar Pradesh, 221304, India. 3a Anselme J.-P. In N-Nitrosamines, Chap. 1. Anselme J.-P. ACS Symposium Series 101; American Chemical Society; Washington DC: 1979: 1 3b Nitrosamines and Related N-Nitroso Compounds . Loeppky RN, Michejda CJ. ACS Symposium Series 553; American Chemical Society; Washington DC: 1994 3c N-Nitroso Compounds: Occurrence and Biological Effects . Bartsch H, O’Neill IK, Castegnaro M, Okada M. IARC Scientific Publication 41; International Agency for Research on Cancer; Lyon: 1982 4a Lijinsky W. Cancer Metastasis Rev. 1987; 6: 301 4b Tricker AR, Preussmann R. Mutat. Res., Genet. Toxicol. Environ. Mutagen. 1991; 259: 277 4c Nitric Oxide Donors: For Pharmaceutical and Biological Applications . Wang PG, Cai TB, Taniguchi N. Wiley-VCH; Weinheim: 2005 4d Wang PG, Xian M, Tang X, Wu X, Wen Z, Cai T, Janczuk AJ. Chem. Rev. 2002; 102: 1091 5a Kakeya H, Imoto M, Takahashi Y, Naganawa H, Takeuchi T, Umezawa K. J. Antibiot. 1993; 46: 1716 5b Li M, Shandilya SM, Carpenter MA, Rathore A, Brown WL, Perkins AL, Harki DA, Solberg J, Hook DJ, Pandey KK, Parniak MA, Johnson JR, Krogan NJ, Somasundaran M, Ali A, Schiffer CA, Harris RS. ACS Chem. Biol. 2012; 7: 506 5c Gnewuch CT, Sosnovsky G. Chem. Rev. 1999; 97: 829 5d Rossini AA, Like AA, Chick WL, Appel MC, Cahill GF. Jr. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 2485 5e Iimura H, Takeuchi T, Kondo S, Matsuzaki M, Umezawa H. J. Antibiot. 1972; 25: 497 6a Saavedra JE. Org. Prep. Proced. Int. 1987; 19: 85 6b Seebach D, Enders D. Angew. Chem., Int. Ed. Engl. 1975; 14: 15 6c Williams DL. H. Tetrahedron 1975; 31: 1343 6d Cikotiene I, Jonusis M, Jakubkiene V. Beilstein J. Org. Chem. 2013; 9: 1819 7a Entwistle ID, Johnstone RA. W, Wilby AH. Tetrahedron 1982; 38: 419 7b Schueler FW, Hanna C. J. Am. Chem. Soc. 1951; 73: 4996 7c Hartman WW, Roll LJ. Org. Synth. 1933; 13: 66 7d Hinmap RL, Hamm KL. J. Org. Chem. 1958; 23: 529 7e Browne DL, Harrity JP. A. Tetrahedron 2010; 66: 553 7f Stewart FH. C. Chem. Rev. 1964; 64: 129 8a Chaudhary P, Kandasamy J, Macabeo AP. G, Tamargo RJ. I, Lee YR. Adv. Synth. Catal. 2021; 363: 2037 8b Liu B, Fan Y, Gao Y, Sun C, Xu C, Zhu J. J. Am. Chem. Soc. 2013; 135: 468 8c Liu BQ, Song C, Sun C, Zhou SG, Zhu J. J. Am. Chem. Soc. 2013; 135: 16625 8d Wang C, Huang Y. Org. Lett. 2013; 15: 5294 8e Chen J, Chen P, Song C, Zhu J. Chem. Eur. J. 2014; 20: 14245 8f Gao T, Sun P. J. Org. Chem. 2014; 79: 9888 8g Wu Y, Feng L.-J, Lu X, Kwong FY, Luo H.-B. Chem. Commun. 2014; 50: 15352 8h Xie F, Qi Z, Yu S, Li X. J. Am. Chem. Soc. 2014; 136: 4780 8i Yu S, Li X. Org. Lett. 2014; 16: 1200 8j Li D.-D, Cao Y.-X, Wang G.-W. Org. Biomol. Chem. 2015; 13: 6958 8k Dong J, Wu Z, Liu Z, Liu P, Sun P. J. Org. Chem. 2015; 80: 12588 8l Wu Y, Sun L, Chen Y, Zhou Q, Huang J.-W, Miao H, Luo H.-B. J. Org. Chem. 2016; 81: 1244 9a Teuten EL, Loeppky RN. Org. Biomol. Chem. 2005; 3: 1097 9b Zhang J, Jiang J, Li Y, Wan X. J. Org. Chem. 2013; 78: 11366 9c Leoppky RN, Tomasik W. J. Org. Chem. 1983; 48: 2751 10 Jones EC. S, Kenner J. J. Chem. Soc. 1932; 711 11 Kano S, Tanaka Y, Sugino E, Shibuya S, Hibino S. Synthesis 1980; 741 12 Alper H, Edward JT. Can. J. Chem. 1970; 48: 1543 13 Enders D, Hassel T, Pieter R, Renger B, Seebach D. Synthesis 1976; 548 14a Chaudhary P, Gupta S, Muniyappan N, Sabiah S, Kandasamy J. Green Chem. 2016; 18: 2323 14b Chaudhary P, Gupta S, Sureshbabu P, Sabiah S, Kandasamy J. Green Chem. 2016; 18: 6215 14c Chaudhary P, Gupta S, Muniyappan N, Sabiah S, Kandasamy J. J. Org. Chem. 2019; 84: 104 14d Chaudhary P, Korde R, Gupta S, Sureshbabu P, Sabiah S, Kandasamy J. Adv. Synth. Catal. 2018; 360: 556 14e Sureshbabu P, Azeez S, Chaudhary P, Kandasamy J. Org. Biomol. Chem. 2019; 17: 845 14f Chauhan S, Chaudhary P, Singh AK, Verma P, Srivastava V, Kandasamy J. Tetrahedron Lett. 2018; 59: 272 14g Azeez S, Chaudhary P, Sureshbabu P, Sabiah S, Kandasamy J. Org. Biomol. Chem. 2018; 16: 8280 15 N-Benzylaniline (2a); Typical Procedure N-Benzyl-N-nitrosoaniline (1a; 1.0 mmol, 1.0 equiv) was stirred in DCM (3 mL) for 5 min at room temperature, then PTSA (0.3 equiv) and ethanethiol (2.0 equiv) were added, and the mixture was stirred until the reaction as complete (TLC). The mixture was then diluted with DCM and washed with H2O. The organic layer was dried (Na2SO4), concentrated, and purified by column chromatography [silica gel, hexane–EtOAc (92:8)] to give a pale-yellow viscous liquid; yield: 164 mg (89%); Rf = 0.62.1H NMR (500 MHz, CDCl3): δ = 7.26–7.19 (m, 4 H), 7.18–7.13 (m, 1 H), 7.08–7.04 (m, 2 H), 6.61 (td, J = 7.4, 1.0 Hz, 1 H), 6.50 (dd, J = 8.6, 0.9 Hz, 2 H), 4.18 (s, 2 H), 3.85 (s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 148.0, 139.3, 129.1, 128.5, 127.4, 127.1, 117.4, 112.7, 48.1. 16 Inami K, Kondo S, Ono Y, Saso C, Mochizuki M. Bioorg. Med. Chem. 2013; 21: 7853 17 Yi S.-L, Li M.-C, Hu X.-Q, Mo W.-M, Shen Z.-L. Chin. Chem. Lett. 2016; 27: 1505 Supplementary Material Supplementary Material Supporting Information