Subscribe to RSS
DOI: 10.1055/a-1994-0879
Measurement of Intervertebral Disc Heights in the Lumbar Spine. Comparison of X-Ray and Magnetic Resonance Imaging, Method of Measurement and Determination of Inter-observer Reliability
Article in several languages: deutsch | EnglishAbstract
Purpose Retrospective radiological examination (X-ray and MRI) aims to investigate the diagnostic value of various methods of measurement with regard to the determination of the intervertebral disc heights of the lumbar spine.
Methods Of 130 patients without detectable damage to the intervertebral discs, the X-ray and MRI images of the lumbar spine were evaluated. The measurements were made either in the center line (Hurxthal) or in the 2-point method according to Dabbs or in the 3-point method according to Fyllos.
Results The average intervertebral disc height for all measured segments was 8.8 mm (SD 1.4 mm). In the Hurxthal measurement, the significantly (p < 0.001) highest values were measured with an average of 9.1 mm (SD 1.3 mm). The average readings for the Fyllos method were 7.5 mm (SD 1.2 mm) and according to Dabbs 6.7 mm (SD 1.2 mm). The measured values of Observer I were on average 1.2 mm (SD 0.3 mm) smaller than those of Observer II (p < 0.001). The highest interobserver correlation was found in the measurements in projection radiography in the AP method according to Dabbs and Fyllos. The measured values in men were 0.5 mm (SD 0.01 mm) larger than in women (p < 0.001), regardless of the method. The height of the intervertebral discs increases significantly until the age of 40, but beyond the age of 40, the height of the intervertebral discs either remains constant or falls off slightly, but not significantly. The lordosis angle of the lumbar spine and the concavity index of the vertebral bodies showed no correlation with the measured disc heights.
Conclusions The radiological measurements to determine the intervertebral disc height have only moderate reliability. The results of X-rays are superior to those of MRI examination. The most accurate results are provided by measurements based on exact landmarks of the vertebral bodies. The method according to Dabbs seems to be the most accurate at the moment. There is no clear age-atypical chondrosis in patients without intervertebral disc damage.
Publication History
Received: 17 September 2022
Accepted after revision: 05 December 2022
Article published online:
09 February 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Graichen H, Putz R. Anatomical and functional aspects of the thoracic and lumbar spine. Orthopade 1999; 28: 424-431 DOI: 10.1007/PL00003626. (PMID: 10394601)
- 2 Hadjipavlou AG, Tzermiadianos MN, Bogduk N. et al. The pathophysiology of disc degeneration: a critical review. J Bone Joint Surg Br 2008; 90: 1261-1270 DOI: 10.1302/0301-620X.90B10.20910. (PMID: 18827232)
- 3 Kim YK, Kang D, Lee I. et al. Differences in the Incidence of Symptomatic Cervical and Lumbar Disc Herniation According to Age, Sex and National Health Insurance Eligibility: A Pilot Study on the Disease’s Association with Work. Int J Environ Res Public Health 2018; 15: 2094 DOI: 10.3390/ijerph15102094. (PMID: 30257414)
- 4 Vucetic N, Astrand P, Güntner P. et al. Diagnosis and prognosis in lumbar disc herniation. Clin Orthop Relat Res 1999; (361) 116-122
- 5 Pfirrmann CW, Metzdorf A, Zanetti M. et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 2001; 26: 1873-1878 DOI: 10.1097/00007632-200109010-00011. (PMID: 11568697)
- 6 Breitenseher JB, Pones M, Breitenseher MJ. Nomenklatur der lumbalen Bandscheiben. Radiologie up2date 2017; 17: 63-72
- 7 Schönberger A, Valentin H, Mehrtens G. Arbeitsunfall und Berufskrankheit. Rechtliche und medizinische Grundlagen für Gutachter, Sozialverwaltung, Berater und Gerichte. 9. Berlin: Erich Schmidt GmbH & Co; 2017
- 8 Schwarze M, Schiltenwolf M. BK 2108 – The Calculation of the Normalized Relative Lumbar Disc Height. Z Orthop Unfall 2019; 157: 378-385 DOI: 10.1055/a-0732-6077. (PMID: 30321901)
- 9 Al-Hadidi MT, Badran DH, Al-Hadidi AM. et al. Magnetic resonance imaging of normal lumbar intervertebral discs. Saudi Med J 2001; 22: 1013-1018 (PMID: 11744977)
- 10 Bach K, Ford J, Foley R. et al. Morphometric Analysis of Lumbar Intervertebral Disc Height: An Imaging Study. World Neurosurg 2018; DOI: 10.1016/j.wneu.2018.12.014.
- 11 Fyllos AH, Arvanitis DL, Karantanas AH. et al. Magnetic resonance morphometry of the adult normal lumbar intervertebral space. Surg Radiol Anat 2018; 40: 1055-1061 DOI: 10.1007/s00276-018-2048-7. (PMID: 29876634)
- 12 Hegazy AA, Hegazy RA. Midsagittal anatomy of lumbar lordosis in adult egyptians: MRI study. Anat Res Int 2014; 2014: 370852 DOI: 10.1155/2014/370852. (PMID: 25210630)
- 13 Hong CH, Park JS, Jung KJ. et al. Measurement of the normal lumbar intervertebral disc space using magnetic resonance imaging. Asian Spine J 2010; 4: 1-6 DOI: 10.4184/asj.2010.4.1.1. (PMID: 20622948)
- 14 Roberts N, Gratin C, Whitehouse GH. MRI analysis of lumbar intervertebral disc height in young and older populations. J Magn Reson Imaging 1997; 7: 880-886 DOI: 10.1002/jmri.1880070517. (PMID: 9307915)
- 15 Teichtahl AJ, Urquhart DM, Wang Y. et al. A Dose-response relationship between severity of disc degeneration and intervertebral disc height in the lumbosacral spine. Arthritis Res Ther 2015; 17: 297 DOI: 10.1186/s13075-015-0820-1. (PMID: 26498120)
- 16 Kimura S, Steinbach GC, Watenpaugh DE. et al. Lumbar spine disc height and curvature responses to an axial load generated by a compression device compatible with magnetic resonance imaging. Spine (Phila Pa 1976) 2001; 26: 2596-2600 DOI: 10.1097/00007632-200112010-00014. (PMID: 11725241)
- 17 Amonoo-Kuofi HS. Morphometric changes in the heights and anteroposterior diameters of the lumbar intervertebral discs with age. J Anat 1991; 175: 159-168 (PMID: 2050561)
- 18 Aydinlioglu A, Diyarbakirli S, Keleş P. Heights of the lumbar intervertebral discs related to age in Turkish individuals. Tohoku J Exp Med 1999; 188: 11-22 DOI: 10.1620/tjem.188.11. (PMID: 10494896)
- 19 Hurxthal LM. Measurement of anterior vertebral compressions and biconcave vertebrae. Am J Roentgenol Radium Ther Nucl Med 1968; 103: 635-644 DOI: 10.2214/ajr.103.3.635. (PMID: 5659979)
- 20 Shao Z, Rompe G, Schiltenwolf M. Radiographic changes in the lumbar intervertebral discs and lumbar vertebrae with age. Spine (Phila Pa 1976) 2002; 27: 263-268 DOI: 10.1097/00007632-200202010-00013. (PMID: 11805689)
- 21 Tibrewal SB, Pearcy MJ. Lumbar intervertebral disc heights in normal subjects and patients with disc herniation. Spine (Phila Pa 1976) 1985; 10: 452-454 DOI: 10.1097/00007632-198506000-00009. (PMID: 4049112)
- 22 Dabbs VM, Dabbs LG. Correlation between disc height narrowing and low-back pain. Spine (Phila Pa 1976) 1990; 15: 1366-1369 DOI: 10.1097/00007632-199012000-00026. (PMID: 2149212)
- 23 Riihimäki H, Wickström G, Hänninen K. et al. Radiographically detectable lumbar degenerative changes as risk indicators of back pain. A cross-sectional epidemiologic study of concrete reinforcement workers and house painters. Scand J Work Environ Health 1989; 15: 280-285 DOI: 10.5271/sjweh.1855. (PMID: 2528205)
- 24 Shimia M, Babaei-Ghazani A, Sadat BE. et al. Risk factors of recurrent lumbar disk herniation. Asian J Neurosurg 2013; 8: 93-96 DOI: 10.4103/1793-5482.116384. (PMID: 24049552)
- 25 Fenty M, Crescenzi R, Fry B. et al. Novel imaging of the intervertebral disk and pain. Global Spine J 2013; 3: 127-132 DOI: 10.1055/s-0033-1347930. (PMID: 24436863)
- 26 Luoma K, Vehmas T, Riihimäki H. et al. Disc height and signal intensity of the nucleus pulposus on magnetic resonance imaging as indicators of lumbar disc degeneration. Spine (Phila Pa 1976) 2001; 26: 680-686 DOI: 10.1097/00007632-200103150-00026. (PMID: 11246386)
- 27 Tabibkhooei A, Ziaei SE, Azar M. et al. Evaluating Predictive Value of Preoperative Clinical and Imaging Findings on the Short-Term Outcome of Surgery in Patients Undergoing Lower Lumbar Discectomy. Cureus 2021; 13: e20772 DOI: 10.7759/cureus.20772. (PMID: 35111457)
- 28 Brooks M, Dower A, Abdul Jalil MF. et al. Radiological predictors of recurrent lumbar disc herniation: a systematic review and meta-analysis. J Neurosurg Spine 2020; DOI: 10.3171/2020.6.Spine20598. (PMID: 33254135)
- 29 Riesenburger RI, Safain MG, Ogbuji R. et al. A novel classification system of lumbar disc degeneration. J Clin Neurosci 2015; 22: 346-351 DOI: 10.1016/j.jocn.2014.05.052. (PMID: 25443079)
- 30 Modic MT, Masaryk TJ, Ross JS. et al. Imaging of degenerative disk disease. Radiology 1988; 168: 177-186 (PMID: 8237706)
- 31 Hung IY, Shih TT, Chen BB. et al. Prediction of Lumbar Disc Bulging and Protrusion by Anthropometric Factors and Disc Morphology. Int J Environ Res Public Health 2021; 18: 2521 DOI: 10.3390/ijerph18052521. (PMID: 33806268)
- 32 Dihlmann W, Bandick J. Die Gelenkssilhouette. Das Informationspotenzial der Röntgenstrahlen. BerlinHeidelberg: Springer; 1995
- 33 Karabekir HS, Gocmen-Mas N, Edizer M. et al. Lumbar vertebra morphometry and stereological assesment of intervertebral space volumetry: a methodological study. Ann Anat 2011; 193: 231-236 DOI: 10.1016/j.aanat.2011.01.011. (PMID: 21550221)
- 34 Menezes-Reis R, Salmon CE, Bonugli GP. et al. Lumbar intervertebral discs T2 relaxometry and T1ρ relaxometry correlation with age in asymptomatic young adults. Quant Imaging Med Surg 2016; 6: 402-412 DOI: 10.21037/qims.2016.08.01. (PMID: 27709076)