Synlett 2023; 34(12): 1367-1375
DOI: 10.1055/a-1990-5102
account
Special Issue Honoring Masahiro Murakami’s Contributions to Science

Sustainable and Mild Catalytic Acceptorless Dehydrogenations

Rahul A. Jagtap
,
Motomu Kanai
This work is supported in part by the Japan Society for the Promotion of Science (JSPS) (KAKENHI) [Grant Nos. 22F22109 (M.K. and R.A.J.) and 22H04896 (M.K)].


Abstract

Catalytic acceptorless dehydrogenation of organic molecules plays a crucial role in fine-chemical synthesis as well as in energy storage and transport. In particular, the acceptorless dehydrogenation of saturated N-heteroarenes and hydrocarbons is realized by both transition-metal-free and transition-metal-catalyzed approaches. In this direction, our research group aims to develop mild catalytic acceptorless dehydrogenation protocols, in the main by using photoredox approaches. In this account, we briefly discuss the advances made by our group on the dehydrogenation of saturated N-heterocycles, aliphatic alcohols, and relatively challenging hydrocarbons.

1 Introduction

1.1 Challenges Associated with Catalytic Acceptorless Dehydrogenation

2 Transition-Metal-Free Dehydrogenation of N-Heterocycles

3 Photoinduced Hybrid-Catalysis-Enabled Dehydrogenations

3.1 The Binary Catalyst System

3.2 The Ternary Catalyst System

3.3 The Noble-Metal-Free Catalyst System

3.4 Catalytic Acceptorless Dehydrogenation of Aliphatic Alcohols

4 Self-Photo-Sensitizing Hydrogen Atom Transfer Catalysis

5 Summary



Publikationsverlauf

Eingereicht: 05. November 2022

Angenommen nach Revision: 30. November 2022

Accepted Manuscript online:
30. November 2022

Artikel online veröffentlicht:
03. Januar 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Momirlan M, Veziroglu TN. Int. J. Hydrogen Energy 2005; 30: 795
  • 2 Sartbaeva A, Kuznetsov VL, Wells SA, Edwards PP. Energy Environ. Sci. 2008; 1: 79
  • 3 Armaroli N, Balzani V. ChemSusChem 2011; 4: 21
  • 4 Lubitz W, Tumas W. Chem. Rev. 2007; 107: 3900
  • 5 Preuster P, Papp C, Wasserscheid P. Acc. Chem. Res. 2017; 50: 74
  • 6 Rao PC, Yoon M. Energies 2020; 13: 6040
  • 7 Sekine Y, Higo T. Top. Catal. 2021; 64: 470
  • 8 Gunanathan C, Milstein D. Science 2013; 341: 1229712
  • 9 Biniwale RB, Rayalu S, Devotta S, Ichikawa M. Int. J. Hydrogen Energy 2008; 33: 360
  • 10 Zhu Q.-L, Xu Q. Energy Environ. Sci. 2015; 8: 478
  • 11 Müller K, Müller J, Arlt W. Energy Technol. 2013; 1: 20
  • 12 Gunanathan C, Milstein D. Chem. Rev. 2014; 114: 12024
  • 13 Werkmeister S, Neumann J, Junge K, Beller M. Chem. Eur. J. 2015; 21: 12226
  • 14 Bera A, Bera S, Banerjee D. Chem. Commun. 2021; 57: 13042
  • 15 Chakraborty S, Brennessel WW, Jones WD. J. Am. Chem. Soc. 2014; 136: 8564
  • 16 Xu R, Chakraborty S, Yuan H, Jones WD. ACS Catal. 2015; 5: 6350
  • 17 Jaiswal G, Landge VG, Jagadeesan D, Balaraman E. Nat. Commun. 2017; 8: 2147
  • 18 Kojima M, Kanai M. Angew. Chem. Int. Ed. 2016; 55: 12224
  • 19 Maier AF. G, Tussing S, Schneider T, Flörke U, Qu Z.-W, Grimme S, Paradies J. Angew. Chem. Int. Ed. 2016; 55: 12219
  • 20 Paradies J. Coord. Chem. Rev. 2019; 380: 170
  • 21 Li N, Zhang W.-X. Chin. J. Chem. 2020; 38: 1360
  • 22 Stephan DW. J. Am. Chem. Soc. 2021; 143: 20002
  • 23 Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
  • 24 Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
  • 25 Burk MJ, Crabtree RH, McGrath DV. J. Chem. Soc., Chem. Commun. 1985; 1829
  • 26 Burk MJ, Crabtree RH. J. Am. Chem. Soc. 1987; 109: 8025
  • 27 Sakakura T, Sodeyama T, Tokunaga Y, Tanaka M. Chem. Lett. 1988; 17: 263
  • 28 Nomura K, Saito Y. J. Chem. Soc., Chem. Commun. 1988; 161
  • 29 Maguire JA, Boese WT, Goldman AS. J. Am. Chem. Soc. 1989; 111: 7088
  • 30 Chowdhury AD, Weding N, Julis J, Franke R, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2014; 53: 6477
  • 31 Chowdhury AD, Julis J, Grabow K, Hannebauer B, Bentrup U, Adam M, Franke R, Jackstell R, Beller M. ChemSusChem 2015; 8: 323
  • 32 Kato S, Saga Y, Kojima M, Fuse H, Matsunaga S, Fukatsu A, Kondo M, Masaoka S, Kanai M. J. Am. Chem. Soc. 2017; 139: 2204
  • 33 He K.-H, Tan F.-F, Zhou C.-Z, Zhou G.-J, Yang X.-L, Li Y. Angew. Chem. Int. Ed. 2017; 56: 3080
  • 34 Sahoo MK, Balaraman E. Green Chem. 2019; 21: 2119
  • 35 Jia Z, Yang Q, Zhang L, Luo S. ACS Catal. 2019; 9: 3589
  • 36 Ritu Ritu, Das S, Tian Y.-M, Karl T, Jain N, König B. ACS Catal. 2022; 12: 10326
  • 37 Mejuto C, Ibáñez-Ibáñez L, Guisado-Barrios G, Mata JA. ACS Catal. 2022; 12: 6238
  • 38 West JG, Huang D, Sorensen EJ. Nat. Commun. 2015; 6: 10093
  • 39 Chirik P, Morris R. Acc. Chem. Res. 2015; 48: 2495
  • 40 Jagtap RA, Punji B. Asian J. Org. Chem. 2020; 9: 326
  • 41 Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
  • 42 Ananikov VP. ACS Catal. 2015; 5: 1964
  • 43 Fuse H, Kojima M, Mitsunuma H, Kanai M. Org. Lett. 2018; 20: 2042
  • 44 Zhou M.-J, Zhang L, Liu G, Xu C, Huang Z. J. Am. Chem. Soc. 2021; 143: 16470
  • 45 Crabtree RH. Chem. Rev. 2017; 117: 9228
  • 46 Sordakis K, Tang C, Vogt LK, Junge H, Dyson PJ, Beller M, Laurenczy G. Chem. Rev. 2018; 118: 372
  • 47 Musa S, Shaposhnikov I, Cohen S, Gelman D. Angew. Chem. Int. Ed. 2011; 50: 3533
  • 48 Chai Z, Zeng T.-T, Li Q, Lu L.-Q, Xiao W.-J, Xu D. J. Am. Chem. Soc. 2016; 138: 10128
  • 49 Yang X.-J, Zheng Y.-W, Zheng L.-Q, Wu L.-Z, Tung C.-H, Chen B. Green Chem. 2019; 21: 1401
  • 50 Zhong J.-J, To W.-P, Liu Y, Lu W, Che C.-M. Chem. Sci. 2019; 10: 4883
  • 51 Fuse H, Mitsunuma H, Kanai M. J. Am. Chem. Soc. 2020; 142: 4493
  • 52 Capaldo L, Quadri LL, Ravelli D. Green Chem. 2020; 22: 3376
  • 53 Cao H, Tang X, Tang H, Yuan Y, Wu J. Chem Catal. 2021; 1: 523
  • 54 Jeffrey JL, Terrett JA, MacMillan DW. C. Science 2015; 349: 1532
  • 55 Capaldo L, Ravelli D. Eur.J. Org. Chem. 2017; 2056
  • 56 Wakaki T, Sakai K, Enomoto T, Kondo M, Masaoka S, Oisaki K, Kanai M. Chem. Eur. J. 2018; 24: 8051
  • 57 Darcy JW, Koronkiewicz B, Parada GA, Mayer JM. Acc. Chem. Res. 2018; 51: 2391
  • 58 Milan M, Salamone M, Costas M, Bietti M. Acc. Chem. Res. 2018; 51: 1984
  • 59 Green SA, Crossley SW. M, Matos JL. M, Vásquez-Céspedes S, Shevick SL, Shenvi RA. Acc. Chem. Res. 2018; 51: 2628
  • 60 Ishida N, Masuda Y, Imamura Y, Yamazaki K, Murakami M. J. Am. Chem. Soc. 2019; 141: 19611
  • 61 Yang H.-B, Feceu A, Martin DB. C. ACS Catal. 2019; 9: 5708
  • 62 Capaldo L, Ravelli D, Fagnoni M. Chem. Rev. 2022; 122: 1875
  • 63 Holmberg-Douglas N, Nicewicz DA. Chem. Rev. 2022; 122: 1925
  • 64 Matsumoto A, Yamamoto M, Maruoka K. ACS Catal. 2022; 12: 2045
  • 65 Lima CG. S, Lima T. deM, Duarte M, Jurberg ID, Paixão MW. ACS Catal. 2016; 6: 1389
  • 66 Fu M.-C, Shang R, Zhao B, Wang B, Fu Y. Science 2019; 363: 1429
  • 67 Bosque I, Bach T. ACS Catal. 2019; 9: 9103
  • 68 Crisenza GE. M, Mazzarella D, Melchiorre P. J. Am. Chem. Soc. 2020; 142: 5461
  • 69 McClain EJ, Monos TM, Mori M, Beatty JW, Stephenson CR. J. ACS Catal. 2020; 10: 12636
  • 70 Fuse H, Irie Y, Fuki M, Kobori Y, Kato K, Yamakata A, Higashi M, Mitsunuma H, Kanai M. J. Am. Chem. Soc. 2022; 144: 6566
  • 71 Tillo AH. ACS Cent. Sci. 2022; 8: 1471