Subscribe to RSS
DOI: 10.1055/a-1975-0687
Titanium - a Cementable Material for Endoarthroplasty
Article in several languages: deutsch | EnglishAbstract
As materials for arthroplasty, titanium alloys exhibit the following advantages over conventional steel, cobalt chromium or chromium nickel alloys – good fatigue strength, excellent biocompatibility, low modulus of elasticity, and high corrosion resistance. The previous worse clinical outcome was most likely caused by crevice corrosion and led to reduced use. To warrant safe use, the design should be optimised (sufficient proximal diameter, proximal collar), in order to reduce unwanted deformation in the proximal part of the prosthesis. Additionally, a rough surface (Ra > 2.5 µm) should not be used. Further research in surface treatments (e. g. silicate-silane) could facilitate additional improvement.
Publication History
Received: 31 July 2022
Accepted: 06 November 2022
Article published online:
31 January 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Abdelaal MS, Restrepo C, Sharkey PF. Global Perspectives on Arthroplasty of Hip and Knee Joints. Orthop Clin N Am 2020; 51: 169-176 DOI: 10.1016/j.ocl.2019.11.003. (PMID: 32138855)
- 2 Keggi KJ, Huo MH, Zatorski LE. Anterior Approach to Total Hip Replacement: Surgical Technique and Clinical Results of Our First One Thousand Cases Using Non-Cemented Prostheses. Yale J Biol Med 1993; 66: 243-256 (PMID: 8209560)
- 3 Learmonth ID, Young C, Rorabeck C. The operation of the century: total hip replacement. Lancet 2007; 370: 1508-1519 DOI: 10.1016/s0140-6736(07)60457-7. (PMID: 17964352)
- 4 Zeiler G, Distler A. Probleme zementierter Titanendoprothesenschäfte. Bionanomaterials 2000; 1: 19-24 DOI: 10.1515/biomat.2000.1.1.19.
- 5 Semlitsch M, Willert HG. Implant materials for hip endoprostheses: old proofs and new trends. Arch Orthop Traum Surg 1995; 114: 61-67 DOI: 10.1007/bf00422826. (PMID: 7734234)
- 6 EFORT Head Office. EFORT Statement on Cobalt in Orthopaedic implants. EFORTnet 2021. Accessed July 15, 2022 at: www.efort.org/efort-statement-on-cobalt-in-orthopaedic-implants
- 7 Tompkins GS, Lachiewicz PF, DeMasi R. A prospective study of a titanium femoral component for cemented total hip arthroplasty. J Arthroplasty 1994; 9: 623-630 DOI: 10.1016/0883-5403(94)90116-3. (PMID: 7699375)
- 8 Piarulli G, Rossi A, Zatti G. Osseointegration in the elderly. Aging Clin Exp Res 2013; 25: 59-60 DOI: 10.1007/s40520-013-0103-0. (PMID: 24046030)
- 9 Marchetti ME, Steinberg GG, Greene JM. et al. A prospective study of proximal femur bone mass following cemented and uncemented hip arthroplasty. J Bone Miner Res 1996; 11: 1033-1039 DOI: 10.1002/jbmr.5650110722. (PMID: 8797126)
- 10 Li MG, Rohrl SM, Wood DJ. et al. Periprosthetic Changes in Bone Mineral Density in 5 Stem Designs 5 Years After Cemented Total Hip Arthroplasty. No Relation to Stem Migration. J Arthroplasty 2007; 22: 689-691 DOI: 10.1016/j.arth.2006.05.035. (PMID: 17689776)
- 11 Middleton S, Toms A. Allergy in total knee arthroplasty: a review of the facts. Bone Joint J 2016; 98-B: 437-441 DOI: 10.1302/0301-620X.98B4.36767. (PMID: 27037424)
- 12 Saccomanno MF, Sircana G, Masci G. et al. Allergy in total knee replacement surgery: Is it a real problem?. World J Orthop 2019; 10: 63-70 DOI: 10.5312/wjo.v10.i2.63. (PMID: 30788223)
- 13 Thyssen JP, Menné T. Metal Allergy—A Review on Exposures, Penetration, Genetics, Prevalence, and Clinical Implications. Chem Res Toxicol 2009; 23: 309-318 DOI: 10.1021/tx9002726. (PMID: 19831422)
- 14 Pacheco KA. Allergy to Surgical Implants. Clin Rev Allergy Immunol 2019; 56: 72-85 DOI: 10.1007/s12016-018-8707-y. (PMID: 30220068)
- 15 Fage SW, Muris J, Jakobsen SS. et al. Titanium: a review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermatitis 2016; 74: 323-345 DOI: 10.1111/cod.12565. (PMID: 27027398)
- 16 Massoud SN, Hunter JB, Holdsworth BJ. et al. Early Femoral Loosening in One Design of Cemented Hip Replacement. J Bone Joint Surg Br 1997; 79: 603-608 DOI: 10.1302/0301-620x.79b4.7131. (PMID: 9250746)
- 17 Willert HG, Brobäck LG, Buchhorn GH. et al. Crevice Corrosion of Cemented Titanium Alloy Stems in Total Hip Replacements. Clin Orthop Relat Res 1996; (333) 51-75 (PMID: 8981882)
- 18 Keller JC, Lautenschlager EP, Marshall GW. et al. Factors affecting surgical alloy/bone cement interface adhesion. J Biomed Mater Res 1980; 14: 639-651 DOI: 10.1002/jbm.820140510. (PMID: 7349670)
- 19 Fontana MG, Greene ND. Corrosion Engineering. New York: McGraw-Hill; 1967
- 20 Thomas SR, Shukla D, Latham PD. Corrosion of cemented titanium femoral stems. J Bone Joint Surg Br 2004; 86: 974-978 DOI: 10.1302/0301-620X.86B7.14812. (PMID: 15446521)
- 21 Okutani Y, Goto K, Kuroda Y. et al. Long-term outcome of cemented total hip arthroplasty with the Charnley-type femoral stem made of titanium alloy. J Orthop Sci 2019; 24: 1047-1052 DOI: 10.1016/j.jos.2019.07.013. (PMID: 31422864)
- 22 Tower SS, Medlin DJ, Bridges RL. et al. Corrosion of Polished Cobalt-Chrome Stems Presenting as Cobalt Encephalopathy. Arthroplast Today 2020; 6: 1022-1027 DOI: 10.1016/j.artd.2020.10.003. (PMID: 33385045)
- 23 Robinson RP, Lovell TP, Green TM. et al. Early femoral component loosening in DF-80 total hip arthroplasty. J Arthroplasty 1989; 4: 55-64 DOI: 10.1016/s0883-5403(89)80054-3. (PMID: 2926409)
- 24 Neuss M, Clemens S, Marx R. et al. Ist die Implantation von Titan-Schäften in der Hüftendoprothetik wirklich obsolet?. Z Orthop Ihre Grenzgeb 2005; 143: 337-342 DOI: 10.1055/s-2005-836570.
- 25 Schöll E, Eggli S, Ganz R. Osteolysis in cemented titanium alloy hip prosthesis. J Arthroplasty 2000; 15: 570-575 DOI: 10.1054/arth.2000.6618. (PMID: 10959994)
- 26 Verdonschot N, Huiskes R. Surface roughness of debonded straight-tapered stems in cemented THA reduces subsidence but not cement damage. Biomaterials 1998; 19: 1773-1779 DOI: 10.1016/s0142-9612(98)00088-x. (PMID: 9856588)
- 27 Hinrichs F, Kuhl M, Boudriot U. et al. A comparative clinical outcome evaluation of smooth (10–13 year results) versus rough surface finish (5–8 year results) in an otherwise identically designed cemented titanium alloy stem. Arch Orthop Trauma Surg 2003; 123: 268-272 DOI: 10.1007/s00402-003-0515-y. (PMID: 12743716)
- 28 Akiyama H, Kawanabe K, Yamamoto K. et al. Clinical outcomes of cemented double-tapered titanium femoral stems: a minimum 5-year follow-up. J Orthop Sci 2011; 16: 689-697 DOI: 10.1007/s00776-011-0154-z. (PMID: 21922242)
- 29 Lichtinger TK, Schürmann N, Müller RT. Frühlockerungen eines zementierten Hüftendoprothesenstiels aus Titan. Unfallchirurg 2000; 103: 956-960 DOI: 10.1007/s001130050652.
- 30 Eingartner C, Volkmann R, Winter E. et al. Results of a cemented titanium alloy straight femoral shaft prosthesis after 10 years of follow-up. Int Orthop 2001; 25: 81-84 DOI: 10.1007/s002640100249. (PMID: 11409457)
- 31 Acklin YP, Berli BJ, Frick W. et al. Nine-year results of Müller cemented titanium Straight Stems in total hip replacement. Arch Orthop Trauma Surg 2001; 121: 391-398 DOI: 10.1007/s004020000254. (PMID: 11510904)
- 32 Mumme T, Marx R, Müller-Rath R. et al. Silikatisierte/silanisierte Implantatoberflächen zur optimierten hydrolysestabilen Verbundfestigkeit zwischen Knochenzement und Metall. Orthopäde 2008; 37: 240-250 DOI: 10.1007/s00132-008-1198-4. (PMID: 18231774)
- 33 Wirtz DC, Fischer H, Zilkens KW. et al. Optimierung des Knochenzement-Implantat-Verbundes durch hdydrolysebeständige Konditionierung der Metalloberfläche. Z Orthop Ihre Grenzgeb 1999; 137: 447-451 DOI: 10.1055/s-2008-1037389. (PMID: 10549124)
- 34 Marx B, Kerschbaum P, Lindlahr S. et al. Haftung von Knochenzement auf keramischen Oberflächen. Deaktivierung der Oberfläche als wirksame Retentionsfläche für Knieendoprothesen durch die Adsorption von atmosphärischem Wasser. Z Orthop Unfall 2018; 156: 85-92 DOI: 10.1055/s-0043-120917. (PMID: 29166686)
- 35 Wirtz DC. Eine neue Beschichtungsmethode für zementierte Femurschaftimplantate zur hydrolysestabilen Optimierung des Metall-Knochenzement-Verbundes. Mainz: Wissenschaftsverlag; 2002
- 36 Mumme T, Marx R, Andereya S. et al. Zementierte Knieendoprothetik. Z Orthop Ihre Grenzgeb 2006; 144: 281-288 DOI: 10.1055/s-2006-933485. (PMID: 16821179)
- 37 Mumme T, Marx R, Müller-Rath R. et al. Surface coating to improve the metal-cement bonding in cemented femur stems. Arch Orthop Trauma Surg 2008; 128: 773-781 DOI: 10.1007/s00402-007-0463-z. (PMID: 17909822)
- 38 Fischer H, Wirtz DC, Weber M. et al. Improvement of the long-term adhesive strength between metal stem and polymethylmethacrylate bone cement by a silica/silane interlayer system. J Biomed Mater Res 2001; 57: 413-418 DOI: 10.1002/1097-4636(20011205)57:3<413::aid-jbm1184>3.0.co;2-r. (PMID: 11523036)
- 39 Tiller HJ, Gobel R, Magnus B. et al. Werkstoffkundliche Grundlagen zum Silicoater-MD-Verfahren. Dent Labor (Munch) 1990; 38: 78-82 (PMID: 2194848)
- 40 Marx R, Qunaibi M, Wirtz DC. et al. Surface pretreatment for prolonged survival of cemented tibial prosthesis components: full- vs. surface-cementation technique. Biomed Eng Online 2005; 4: 61 DOI: 10.1186/1475-925x-4-61. (PMID: 16262888)
- 41 Gravius S, Wirtz DC, Siebert CH. et al. In vitro interface and cement mantle analysis of different femur stem designs. J Biomech 2008; 41: 2021-2028