Hamostaseologie 2023; 43(03): 208-214
DOI: 10.1055/a-1972-8983
Original Article

Osteoporosis Remains Constant in Patients with Hemophilia—Long-Term Course in Consideration of Comorbidities

Anna C. Strauss*
1   Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
,
Pius Muellejans*
2   Department of Orthopaedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
,
Sebastian Koob
2   Department of Orthopaedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
,
Georg Goldmann
3   Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
,
Peter H. Pennekamp
2   Department of Orthopaedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
,
Thomas A. Wallny
2   Department of Orthopaedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
,
Johannes Oldenburg
3   Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
,
Andreas C. Strauss
2   Department of Orthopaedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
› Institutsangaben

Abstract

Introduction Patients with hemophilia (PWHs) suffer from an increased risk of osteoporosis. Multiple hemophilia and hemophilic arthropathy associated factors correlate with a low bone mineral density (BMD) in PWHs. The aim of this study was to assess the long-term development of BMD in PWH as well as to analyze potentially influencing factors.

Methods A total of 33 adult PWHs were evaluated in a retrospective study. General medical history, specific-hemophilia-associated comorbidities, joint status using the Gilbert score, calcium level, and vitamin D level as well as at least two results of bone density measurements with a minimum range of 10 years per patient were taken into account.

Results The BMD did not change significantly from one point of measurement to the other. A total of 7 (21.2%) cases of osteoporosis and 16 (48.5%) cases of osteopenia were identified. The two following significant correlations could be revealed: the higher the patients' body mass index, the higher their BMD (r = 0.41; p = 0.022). Moreover, a high Gilbert score came along with a low BMD (r = −0.546; p = 0.003).

Conclusion Even if PWHs frequently suffer from a reduced BMD, our data suggest that their BMD remains constant on a low level in the course of time. A risk factor of osteoporosis often found in PWHs is a vitamin D deficiency and joint destruction. Therefore, a standardized screening of PWHs on BMD reduction by collecting vitamin D blood level and assessing joint status seems appropriate.

Zusammenfassung

Einleitung Hämophilie-Patienten leiden an einem erhöhten Osteoporose-Risiko. Verschiedene Hämophilie- und Arthropathie-bedingte Faktoren korrelieren mit der Minderung der Knochendichte (BMD: Bone Mineral Density). Das Ziel dieser Studie war es, den Langzeitverlauf der Knochendichte von Hämophilie-Patienten und mögliche Einflussfaktoren darauf zu untersuchen.

Methode In einer retrospektiven Studie wurden 33 erwachsene Hämophilie-Patienten untersucht. Allgemeine und Hämophilie-spezifische Erkrankungen, der Gelenkstatus gemessen mit dem Gilbert-Score, Kalzium- und Vitamin D-Werte und zwei Knochendichtemessungen mit einem Mindestabstand von zehn Jahren wurden erfasst.

Ergebnisse Die Knochendichte änderte sich zwischen dem ersten und zweiten Messpunkt nicht signifikant. Bei 7 (21,2%) Probanden wurde eine Osteoporose und bei 16 (48,5%) Probanden eine Osteopenie diagnostiziert. Es konnten zwei signifikante Zusammenhänge ermittelt werden: Je höher der Body Mass Index (BMI) war, desto höher war die Knochendichte (r = 0.41; p = 0.022) und je höher der Gilbert Score war, desto niedriger war die Knochendichte (r = −0.546; p = 0.003).

Schlussfolgerung Auch wenn Hämophilie-Patienten häufig an einer reduzierten Knochendichte leiden, lässt diese Studie darauf schließen, dass die Knochendichte über die Zeit auf einem erniedrigten Level konstant bleibt. Da ein Vitamin D-Mangel und Arthropathien als Risikofaktoren für das Auftreten einer Osteoporose häufig bei Hämophilie-Patienten gefunden werden, sollten regelmäßige Screenings des Vitamin D-Spiegels und des Gelenkstatus erfolgen, um bei den betroffenen Patienten anhand der Ergebnisse ggf. die Knochendichte mittels DXA zu bestimmen.

* These authors contributed equally.




Publikationsverlauf

Eingereicht: 13. Juni 2022

Angenommen: 01. November 2022

Artikel online veröffentlicht:
02. März 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 WHO. WHO scientific group on the assessment of osteoporosis at primary health care level. 2007 . Accessed January 2, 2023 at: https://frax.shef.ac.uk/FRAX/pdfs/WHO_Technical_Report.pdf
  • 2 Wallny TA, Scholz DT, Oldenburg J. et al. Osteoporosis in haemophilia - an underestimated comorbidity?. Haemophilia 2007; 13 (01) 79-84
  • 3 Iorio A, Fabbriciani G, Marcucci M, Brozzetti M, Filipponi P. Bone mineral density in haemophilia patients. A meta-analysis. Thromb Haemost 2010; 103 (03) 596-603
  • 4 Paschou SA, Anagnostis P, Karras S. et al. Bone mineral density in men and children with haemophilia A and B: a systematic review and meta-analysis. Osteoporos Int 2014; 25 (10) 2399-2407
  • 5 Gilbert MS. Prophylaxis: musculoskeletal evaluation. Semin Hematol 1993; 30 (3, Suppl 2): 3-6
  • 6 Huskisson EC. Measurement of pain. Lancet 1974; 2 (7889): 1127-1131
  • 7 Morfeld M, Bullinger M, Nantke J, Brähler E. The version 2.0 of the SF-36 Health Survey: results of a population-representative study [in German]. Soz Praventivmed 2005; 50 (05) 292-300
  • 8 van Genderen FR, van Meeteren NL, van der Bom JG. et al. Functional consequences of haemophilia in adults: the development of the Haemophilia Activities List. Haemophilia 2004; 10 (05) 565-571
  • 9 Kronenberger B, Zeuzem S. New developments in HCV therapy. J Viral Hepat 2012; 19 (Suppl. 01) 48-51
  • 10 Gallacher SJ, Deighan C, Wallace AM. et al. Association of severe haemophilia A with osteoporosis: a densitometric and biochemical study. Q J Med 1994; 87 (03) 181-186
  • 11 Nair AP, Jijina F, Ghosh K, Madkaikar M, Shrikhande M, Nema M. Osteoporosis in young haemophiliacs from western India. Am J Hematol 2007; 82 (06) 453-457
  • 12 Mansouritorghabeh H, Rezaieyazdi Z, Badiei Z. Are individuals with severe haemophilia A prone to reduced bone density?. Rheumatol Int 2008; 28 (11) 1079-1083
  • 13 Mansouritorghabeh H, Rezaieyazdi Z, Saadati N, Saghafi M, Mirfeizi Z, Rezai J. Reduced bone density in individuals with severe hemophilia B. Int J Rheum Dis 2009; 12 (02) 125-129
  • 14 Nakamichi Y, Udagawa N, Suda T, Takahashi N. Mechanisms involved in bone resorption regulated by vitamin D. J Steroid Biochem Mol Biol 2018; 177: 70-76
  • 15 Kempton CL, Antoniucci DM, Rodriguez-Merchan EC. Bone health in persons with haemophilia. Haemophilia 2015; 21 (05) 568-577
  • 16 Rabenberg M, Scheidt-Nave C, Busch MA, Rieckmann N, Hintzpeter B, Mensink GB. Vitamin D status among adults in Germany–results from the German Health Interview and Examination Survey for Adults (DEGS1). BMC Public Health 2015; 15: 641
  • 17 Orwoll ES, Binkley NC, Lewiecki EM, Gruntmanis U, Fries MA, Dasic G. Efficacy and safety of monthly ibandronate in men with low bone density. Bone 2010; 46 (04) 970-976
  • 18 Anagnostis P, Vyzantiadis TA, Charizopoulou M. et al. The effect of monthly ibandronate on bone mineral density and bone turnover markers in patients with haemophilia A and B and increased risk for fracture. Thromb Haemost 2013; 110 (02) 257-263
  • 19 Wood CL, Soucek O, Wong SC. et al. Animal models to explore the effects of glucocorticoids on skeletal growth and structure. J Endocrinol 2018; 236 (01) R69-R91
  • 20 Orsini LG, Pinheiro MM, Castro CH, Silva AE, Szejnfeld VL. Bone mineral density measurements, bone markers and serum vitamin D concentrations in men with chronic non-cirrhotic untreated hepatitis C. PLoS One 2013; 8 (11) e81652
  • 21 Bedimo R, Kang M, Tebas P. et al. Effects of pegylated interferon/ribavirin on bone turnover markers in HIV/hepatitis C virus-coinfected patients. AIDS Res Hum Retroviruses 2016; 32 (04) 325-328
  • 22 Biver E, Calmy A, Delhumeau C, Durosier C, Zawadynski S, Rizzoli R. Microstructural alterations of trabecular and cortical bone in long-term HIV-infected elderly men on successful antiretroviral therapy. AIDS 2014; 28 (16) 2417-2427
  • 23 Bolland MJ, Grey A, Reid IR. Skeletal health in adults with HIV infection. Lancet Diabetes Endocrinol 2015; 3 (01) 63-74
  • 24 Bielemann RM, Domingues MR, Horta BL. et al. Physical activity throughout adolescence and bone mineral density in early adulthood: the 1993 Pelotas (Brazil) Birth Cohort Study. Osteoporos Int 2014; 25 (08) 2007-2015
  • 25 Khawaji M, Akesson K, Berntorp E. Long-term prophylaxis in severe haemophilia seems to preserve bone mineral density. Haemophilia 2009; 15 (01) 261-266
  • 26 Recht M, Liel MS, Turner RT, Klein RF, Taylor JA. The bone disease associated with factor VIII deficiency in mice is secondary to increased bone resorption. Haemophilia 2013; 19 (06) 908-912
  • 27 Ghosh K, Madkaikar M, Jijina F, Shetty S. Fractures of long bones in severe haemophilia. Haemophilia 2007; 13 (03) 337-339
  • 28 Anagnostis P, Vakalopoulou S, Vyzantiadis TA. et al. The clinical utility of bone turnover markers in the evaluation of bone disease in patients with haemophilia A and B. Haemophilia 2014; 20 (02) 268-275
  • 29 Liu W, Zhao Z, Na Y, Meng C, Wang J, Bai R. Dexamethasone-induced production of reactive oxygen species promotes apoptosis via endoplasmic reticulum stress and autophagy in MC3T3-E1 cells. Int J Mol Med 2018; 41 (04) 2028-2036