CC BY-NC-ND 4.0 · Organic Materials 2022; 4(04): 228-239
DOI: 10.1055/a-1967-8617
Organic Materials in India
Original Article

Exploring Optically Fueled Dissipative Self-Assembly of a Redox-Active Perylene Diimide Scaffold

a   Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
b   Department of Chemistry, Sidho-Kanho-Birsha University, Purulia 723104, India
a   Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
› Author Affiliations

Dedicated to Prof. Francis C. Spano.


Dissipative self-assembly is ubiquitous in nature and underlies many complex structures and functions in natural systems. These processes are primarily enabled by the consumption of chemical fuels. However, dissipative self-assembly processes fueled by light have also been parallelly developed, known as optically fueled dissipative self-assembly. Photoswitchable molecules have been widely investigated as prototypical molecular systems for light-driven dissipative self-assembly. Elucidation of optically fueled dissipative self-assembly by a photo-responsive yet non-photoswitchable moiety however remains elusive. This contribution thus demonstrates the first ever report of an optically fueled dissipative self-assembly arising from a redox active perylene diimide scaffold (DIPFPDI). Photo-reduction of neutral DIPFPDI in a poor solvent such as DMF affords its radical anion and repeated irradiation leads to an increased concentration of radical anion, inducing the construction of an H-type aggregate. Nevertheless, dissolved molecular oxygen can efficiently deactivate the radical anions to their neutral precursors and thus the self-assembled state is no longer sustained. The signature of H-type aggregation is deduced from steady-state UV-Vis, fluorescence as well as time-resolved fluorescence spectroscopy. Theoretical insights reveal that dimerization is more feasible in the charged states because of greater delocalization of the excess charge in the charged states. We believe that these findings will infuse new energy into the field of optically fueled dissipative self-assembly of redox-active chromophores.

Publication History

Received: 18 July 2022

Accepted after revision: 24 October 2022

Accepted Manuscript online:
25 October 2022

Article published online:
18 November 2022

© 2022. The authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

  • 1 Whitesides GM, Grzybowski B. Science 2002; 295: 2418
  • 2 van Rossum SAP, Tena-Solsona M, van Esch JH, Eelkema R, Boekhoven J. Chem. Soc. Rev. 2017; 46: 5519
    • 3a Mattia E, Otto S. Nat. Nanotechnol. 2015; 10: 111
    • 3b Arango-Restrepo A, Barragán D, Rubi JM. Phys. Chem. Chem. Phys. 2019; 21: 17475
  • 4 Goldbeter A. Philos. trans. R. Soc. London 2018; 376: 20170376
    • 5a Nicolis G, Prigogine I. Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations. 1st. John Wiley; New York: 1977
    • 5b Merindol R, Walther A. Chem. Soc. Rev. 2017; 46: 5588
  • 6 Hess H, Ross JL. Chem. Soc. Rev. 2017; 46: 5570
    • 7a De S, Klajn R. Adv. Mater. 2018; 30: 1706750
    • 7b Riess B, Grötsch RK, Boekhoven J. Chem 2020; 6: 552
    • 7c Ragazzon G, Prins LJ. Nat. Nanotechnol. 2018; 13: 882
    • 7d Sharko A, Livitz D, De Piccoli S, Bishop KJM, Hermans TM. Chem. Rev. 2022; 122: 11759
    • 7e Leira-Iglesias J, Sorrenti A, Sato A, Dunne PA, Hermans TM. Chem. Commun. 2016; 52: 9009
    • 7f Leira-Iglesias J, Tassoni A, Adachi T, Stich M, Hermans TM. Nat. Nanotechnol. 2018; 13: 1021
  • 8 Boekhoven J, Brizard AM, Kowlgi KNK, Koper GJM, Eelkema R, van Esch JH. Angew. Chem. Int. Ed. 2010; 49: 4825
  • 9 Weißenfels M, Gemen J, Klajn R. Chem 2021; 7: 23
  • 10 Kathan M, Hecht S. Chem. Soc. Rev. 2017; 46: 5536
  • 11 Bian T, Chu Z, Klajn R. Adv. Mater. 2020; 32: 1905866
    • 13a Kumar S, Shukla J, Kumar Y, Mukhopadhyay P. Org. Chem. Front. 2018; 5: 2254
    • 13b Sharma V, Puthumana U, Karak P, Koner AL. J. Org. Chem. 2018; 83: 11458
    • 13c Khan A, Agrahari A, Saha S, Koner AL. J. Mater. Chem. C 2022; 10: 14480
    • 14a Ghosh I, Ghosh T, Bardagi Javier I, König B. Science 2014; 346: 725
    • 14b La Porte NT, Martinez JF, Hedström S, Rudshteyn B, Phelan BT, Mauck CM, Young RM, Batista VS, Wasielewski MR. Chem. Sci. 2017; 8: 3821
  • 15 Lee S-H, Oh BM, Hong CY, Jung S-K, Park S-H, Jeon GG, Kwon Y-W, Jang S, Lee Y, Kim D, Kim JH, Kwon OP. ACS Appl. Mater. Interfaces 2019; 11: 35904
  • 16 Kumar S, Kumar Y, Keshri SK, Mukhopadhyay P. Magnetochemistry 2016; 2,: 42
    • 17a Jiao Y, Liu K, Wang G, Wang Y, Zhang X. Chem. Sci. 2015; 6: 3975
    • 17b Lü B, Chen Y, Li P, Wang B, Müllen K, Yin M. Nat. Commun. 2019; 10: 767
  • 19 Schmidt R, Oh JH, Sun Y-S, Deppisch M, Krause A-M, Radacki K, Braunschweig H, Könemann M, Erk P, Bao Z, Würthner F. J. Am. Chem. Soc. 2009; 131: 6215
  • 20 Scholz R, Schreiber MJC. P. J. Chem. Phys. 2006; 325: 9
  • 21 Jiménez ÁJ, Lin M-J, Burschka C, Becker J, Settels V, Engels B, Würthner F. Chem. Sci. 2013; 5: 608
    • 22a Giaimo JM, Lockard JV, Sinks LE, Scott AM, Wilson TM, Wasielewski MR. J. Phys. Chem. A 2008; 112: 2322
    • 22b Yagai S, Usui M, Seki T, Murayama H, Kikkawa Y, Uemura S, Karatsu T, Kitamura A, Asano A, Seki S. J. Am. Chem. Soc. 2012; 134: 7983
  • 23 Gosztola DJ, Niemczyk MP, Svec WA, Lukas AS, Wasielewski MRJ. J. o. P. C. A. J. Phys. Chem. A 2000; 104: 6545
  • 24 Hestand NJ, Spano FC. Chem. Rev. 2018; 118: 7069
  • 25 Clark J, Chang J-F, Spano FC, Friend RH, Silva C. Appl. Phys. Lett. 2009; 94: 163306
  • 26 Grötsch RK, Wanzke C, Speckbacher M, Angı A, Rieger B, Boekhoven J. J. Am. Chem. Soc. 2019; 141: 9872
  • 27 Meinardi F, Cerminara M, Sassella A, Bonifacio R, Tubino R. Phys. Rev. Lett. 2003; 91: 247401
  • 28 Guha S, Goodson FS, Corson LJ, Saha S. J. Am. Chem. Soc. 2012; 134: 13679
  • 29 Goodson FS, Panda DK, Ray S, Mitra A, Guha S, Saha S. Org. Biomol. Chem. 2013; 11: 4797
  • 30 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision B.01.. Gaussian, Inc.. Wallingford, CT: 2016
  • 31 Oleson A, Zhu T, Dunn IS, Bialas D, Bai Y, Zhang W, Dai M, Reichman DR, Tempelaar R, Huang L, Spano FC. J. Phys. Chem. C 2019; 123: 20567
    • 32a Biswas S, Pramanik A, Pal S, Sarkar P. J. Phys. Chem. C 2017; 121: 2574
    • 32b Biswas S, Pramanik A, Sarkar P. J. Phys. Chem. C 2018; 122: 14296
  • 33 Heyd J, Scuseria GE, Ernzerhof M. J. Chem. Phys. 2003; 118: 8207